The Impact of Privatized Education on the Level of Labour Productivity

Jaewon Kim - Statistics for International Relations Research II

1. Introduction

The aim of this research is to explore the potential causal relationship between the privatization of education and labor productivity.In recent years, many countries have embarked on the application of market-based privatization approaches to different levels of education. Mounting budget deficits of the government, deteriorating quality of services, and out-of-date curriculum are among the core reasons why a huge portion of responsibilities to education service delivery that have long been recognized as public goods were shifted onto the private sector. The theoretical rationale behind the privatization of education is that market-oriented forces can better serve as a tool to increase the quality of the education while lowering the cost through extensive competition among providers, ensure more flexibility in contracting of competent teacher, and above all, to reduce the burden of education cost and expectations (Fennell, 2012; Steiner-Khamsi & Draxler, 2018).

However such trend has also stimulated considerable controversy as the private sector is inherently ‘profit-seeking’ and ‘efficiency-seeking.’ Many scholars and practitioners point out that such different nature of the private sector would rather hamper the universal access to education or damage the quality of education in a long run. Compared to sectors such as transportation, roads, or energy that have widely enjoyed the engagement of the private sector, the education sector, therefore, is relatively a late adopter of privatization schemes, due in large part to the widely-held perception that the provision and management of education services ought to be the responsibility of the public sector as it is a public good (Draxler, 2013).

Against this backdrop, this research attempts to examine whether the privatization of education contributes to the improvement of labour productivity. Among different levels of education from pre-primary to tertiary, this research will specifically focus on secondary education due to the fact that it is generally considered to play a fundamental role in preparing pupils directly for the labour market as it is when the pupils start receiving ‘vocational education’. This study will examine whether there is any meaningful causal relationship between the level of the private sector engagement in education and labour productivity by testing the hypothesis ‘The increased level of private sector engagement in the delivery of secondary education services increases overall labour productivity.’

2. Data

To test the hypothesis, the first model will use a ‘School enrollment, secondary, private (% of total secondary)’ data set prepared by the World Bank as the independent variable. It shows the ratio of pupils enrolled in institutions that are operated by a private sector body, not a public authority, from 1998 to 2019.A high ratio would consequently mean that the private sector (e.g. NGOs, firms, religious bodies, or local communities)is strongly engaged in the delivery of education services. An ‘output per worker (GDP constant 2011 international $ in PPP)’ data set prepared by ILO will be the dependent variable. Labour productivity in this data set refers to the total volume of output (GDP) produced per one-unit of labour during a time frame of 2010-2019. The usage of this data set is expected to allow me to assess the level of GDP-to-labour input as well as growth rates over the given time frame, which would help me identify the degree of efficiency as well as quality of labour in the production process in each sample country.

lpdata <- read.csv("ILO_labour_productivity.csv",  header = TRUE)

pedata <- read.csv("WB_private education.csv",  header = TRUE)

Both are time series data sets that contain a total of 3 variables - country, year, and value. However we can see that there is difference in the number of observations as the number of countries covered are different: labour productivity data has 1890 observations of a total of 189 countries while private education data has 1780 observations of a total of 178 countries. Some countries covered in the private education data are missing in the labour productivity data, and vice versa. For example, the private education data developed by the World Bank contains a number of territories that are not recognized as a country under the UN system, such as Gibraltar, a British overseas territory and headland or West Bank and Gaza area. However it only includes countries who have data for at least one year during the given time span. Therefore I will tailor the extra variables of the World Bank data and ILO data to combine two data frames vertically in the later stage.

Three control variables that are assumed to be related (either closely or loosely) to labour productivity will be also added: mean weekly working hour (mwwhour), consumer price for health service (healthconpri), and average cost for educational services (educost). All three data sets are those imported from ILO. A data set of ‘weekly working hour’ presents the mean values of weekly working hours of all employees, while the remaining two data sets of consumer price for health service and average cost for educational services present the values of consumer price index (CPI).

working_hr <- read.csv("mean_weekly_working_hour.csv",  header = TRUE)

conpri_health <- read.csv("consumer_price_health.csv",  header = TRUE)

edu_price <- read.csv("education_service_aveprice.csv",  header = TRUE)

All three of them have 3 variables: country, year, value, and they all cover maximum 10 years of data between 2010 and 2019. However, the volume of observations vary (2079 for mwwhour; 1717 for healthconpri; and 1676 for educost) according to the availability of country data.

3. Visualization of the distribution of the variable

(1-1) The distribution of the dependent variable by year

library(arsenal)
require(knitr)

## Loading required package: knitr

require(survival)

## Loading required package: survival

str(lpdata)

## 'data.frame':    1890 obs. of  3 variables:
##  $ Country: chr  "Afghanistan" "Afghanistan" "Afghanistan" "Afghanistan" ...
##  $ Year   : int  2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 ...
##  $ Value  : int  9573 9219 9910 9943 9697 9365 9178 9048 8871 8794 ...

lpdata_table <- tableby(Year ~ Value, data = lpdata) 
summary(lpdata_table, title = "Labour Productivity Data - Summary Statistics, by year")

## 
## 
## Table: Labour Productivity Data - Summary Statistics, by year
## 
## |                            |     2010 (N=189)      |     2011 (N=189)      |     2012 (N=189)      |     2013 (N=189)      |     2014 (N=189)      |     2015 (N=189)      |     2016 (N=189)      |     2017 (N=189)      |     2018 (N=189)      |     2019 (N=189)      |    Total (N=1890)     | p value|
## |:---------------------------|:---------------------:|:---------------------:|:---------------------:|:---------------------:|:---------------------:|:---------------------:|:---------------------:|:---------------------:|:---------------------:|:---------------------:|:---------------------:|-------:|
## |**Value**                   |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |   1.000|
## |&nbsp;&nbsp;&nbsp;Mean (SD) | 44040.635 (41188.903) | 44590.513 (42246.687) | 44929.180 (42127.220) | 45270.444 (42554.979) | 45461.772 (42289.946) | 45506.132 (41560.604) | 45841.190 (41852.116) | 46372.979 (42421.424) | 46816.640 (42865.544) | 47013.016 (42849.813) | 45584.250 (42107.871) |        |
## |&nbsp;&nbsp;&nbsp;Range     | 1534.000 - 240632.000 | 1535.000 - 242518.000 | 1510.000 - 245190.000 | 1492.000 - 265200.000 | 1478.000 - 253445.000 | 1480.000 - 240693.000 | 1472.000 - 249868.000 | 1441.000 - 244315.000 | 1430.000 - 244196.000 | 1419.000 - 241729.000 | 1419.000 - 265200.000 |        |

(1-2) The distribution of the dependent variable by country

lpdata_table_2 <- tableby(Country ~ Value, data = lpdata) 
summary(lpdata_table_2, title = "Labour Productivity Data - Summary Statistics, by country")

## 
## 
## Table: Labour Productivity Data - Summary Statistics, by country
## 
## |                            | Afghanistan (N=10)  |    Albania (N=10)     |    Algeria (N=10)     |     Angola (N=10)     |   Argentina (N=10)    |    Armenia (N=10)     |   Australia (N=10)    |     Austria (N=10)      |   Azerbaijan (N=10)   |    Bahamas (N=10)     |    Bahrain (N=10)     |  Bangladesh (N=10)   |    Barbados (N=10)    |    Belarus (N=10)     |     Belgium (N=10)      |     Belize (N=10)     |    Benin (N=10)     |     Bhutan (N=10)     |    Bolivia (N=10)     | Bosnia and Herzegovina (N=10) |    Botswana (N=10)    |     Brazil (N=10)     | Brunei Darussalam (N=10) |    Bulgaria (N=10)    | Burkina Faso (N=10) |   Burundi (N=10)    | C?te d'Ivoire (N=10)  |   Cambodia (N=10)   |   Cameroon (N=10)   |     Canada (N=10)     |   Cape Verde (N=10)   | Central African Republic (N=10) |     Chad (N=10)     | Channel Islands (N=10) |     Chile (N=10)      |     China (N=10)      |    Colombia (N=10)    |    Comoros (N=10)     |     Congo (N=10)     | Congo, Democratic Republic of the (N=10) |   Costa Rica (N=10)   |    Croatia (N=10)     |      Cuba (N=10)      |     Cyprus (N=10)     |    Czechia (N=10)     |     Denmark (N=10)      |   Djibouti (N=10)    | Dominican Republic (N=10) |    Ecuador (N=10)     |     Egypt (N=10)      |  El Salvador (N=10)   | Equatorial Guinea (N=10) |   Eritrea (N=10)    |    Estonia (N=10)     |    Eswatini (N=10)    |   Ethiopia (N=10)   |      Fiji (N=10)      |     Finland (N=10)     |      France (N=10)      | French Polynesia (N=10) |     Gabon (N=10)      |    Gambia (N=10)    |    Georgia (N=10)     |     Germany (N=10)     |     Ghana (N=10)     |     Greece (N=10)     |      Guam (N=10)       |   Guatemala (N=10)    |    Guinea (N=10)    | Guinea-Bissau (N=10) |     Guyana (N=10)     |    Haiti (N=10)     |    Honduras (N=10)    | Hong Kong, China (N=10) |    Hungary (N=10)     |     Iceland (N=10)     |     India (N=10)      |   Indonesia (N=10)    | Iran, Islamic Republic of (N=10) |      Iraq (N=10)      |     Ireland (N=10)      |     Israel (N=10)     |      Italy (N=10)       |    Jamaica (N=10)     |     Japan (N=10)      |     Jordan (N=10)     |   Kazakhstan (N=10)   |    Kenya (N=10)     | Korea, Democratic People's Republic of (N=10) | Korea, Republic of (N=10) |     Kuwait (N=10)      |   Kyrgyzstan (N=10)   | Lao People's Democratic Republic (N=10) |     Latvia (N=10)     |    Lebanon (N=10)     |   Lesotho (N=10)    |   Liberia (N=10)    |     Libya (N=10)      |   Lithuania (N=10)    |    Luxembourg (N=10)    |   Macau, China (N=10)   |  Madagascar (N=10)  |    Malawi (N=10)    |    Malaysia (N=10)    |    Maldives (N=10)    |     Mali (N=10)     |      Malta (N=10)      |   Mauritania (N=10)   |   Mauritius (N=10)    |     Mexico (N=10)     | Moldova, Republic of (N=10) |    Mongolia (N=10)    |   Montenegro (N=10)   |    Morocco (N=10)     |  Mozambique (N=10)  |    Myanmar (N=10)    |    Namibia (N=10)     |    Nepal (N=10)     |   Netherlands (N=10)    |  New Caledonia (N=10)   |  New Zealand (N=10)   |   Nicaragua (N=10)    |    Niger (N=10)     |    Nigeria (N=10)     | North Macedonia (N=10) |      Norway (N=10)      | Occupied Palestinian Territory (N=10) |      Oman (N=10)      |    Pakistan (N=10)    |     Panama (N=10)     | Papua New Guinea (N=10) |    Paraguay (N=10)    |      Peru (N=10)      |  Philippines (N=10)   |     Poland (N=10)     |    Portugal (N=10)    |   Puerto Rico (N=10)    |      Qatar (N=10)       |    Romania (N=10)     | Russian Federation (N=10) |    Rwanda (N=10)    |  Saint Lucia (N=10)   | Saint Vincent and the Grenadines (N=10) |     Samoa (N=10)      | Sao Tome and Principe (N=10) |   Saudi Arabia (N=10)   |    Senegal (N=10)     |     Serbia (N=10)     | Sierra Leone (N=10) |    Singapore (N=10)     |    Slovakia (N=10)    |    Slovenia (N=10)    | Solomon Islands (N=10) |   Somalia (N=10)    |  South Africa (N=10)  | South Sudan (N=10)  |     Spain (N=10)      |   Sri Lanka (N=10)    |     Sudan (N=10)      |    Suriname (N=10)    |      Sweden (N=10)      |   Switzerland (N=10)    | Syrian Arab Republic (N=10) | Taiwan, China (N=10)  |  Tajikistan (N=10)   | Tanzania, United Republic of (N=10) |    Thailand (N=10)    | Timor-Leste (N=10)  |     Togo (N=10)     |     Tonga (N=10)      | Trinidad and Tobago (N=10) |    Tunisia (N=10)     |     Turkey (N=10)     |  Turkmenistan (N=10)  |    Uganda (N=10)    |    Ukraine (N=10)     | United Arab Emirates (N=10) | United Kingdom (N=10) |  United States (N=10)   | United States Virgin Islands (N=10) |    Uruguay (N=10)     |   Uzbekistan (N=10)   |   Vanuatu (N=10)    | Venezuela, Bolivarian Republic of (N=10) |   Viet Nam (N=10)    | Western Sahara (N=10) |     Yemen (N=10)     |    Zambia (N=10)    |   Zimbabwe (N=10)   |    Total (N=1890)     | p value|
## |:---------------------------|:-------------------:|:---------------------:|:---------------------:|:---------------------:|:---------------------:|:---------------------:|:---------------------:|:-----------------------:|:---------------------:|:---------------------:|:---------------------:|:--------------------:|:---------------------:|:---------------------:|:-----------------------:|:---------------------:|:-------------------:|:---------------------:|:---------------------:|:-----------------------------:|:---------------------:|:---------------------:|:------------------------:|:---------------------:|:-------------------:|:-------------------:|:---------------------:|:-------------------:|:-------------------:|:---------------------:|:---------------------:|:-------------------------------:|:-------------------:|:----------------------:|:---------------------:|:---------------------:|:---------------------:|:---------------------:|:--------------------:|:----------------------------------------:|:---------------------:|:---------------------:|:---------------------:|:---------------------:|:---------------------:|:-----------------------:|:--------------------:|:-------------------------:|:---------------------:|:---------------------:|:---------------------:|:------------------------:|:-------------------:|:---------------------:|:---------------------:|:-------------------:|:---------------------:|:----------------------:|:-----------------------:|:-----------------------:|:---------------------:|:-------------------:|:---------------------:|:----------------------:|:--------------------:|:---------------------:|:----------------------:|:---------------------:|:-------------------:|:--------------------:|:---------------------:|:-------------------:|:---------------------:|:-----------------------:|:---------------------:|:----------------------:|:---------------------:|:---------------------:|:--------------------------------:|:---------------------:|:-----------------------:|:---------------------:|:-----------------------:|:---------------------:|:---------------------:|:---------------------:|:---------------------:|:-------------------:|:---------------------------------------------:|:-------------------------:|:----------------------:|:---------------------:|:---------------------------------------:|:---------------------:|:---------------------:|:-------------------:|:-------------------:|:---------------------:|:---------------------:|:-----------------------:|:-----------------------:|:-------------------:|:-------------------:|:---------------------:|:---------------------:|:-------------------:|:----------------------:|:---------------------:|:---------------------:|:---------------------:|:---------------------------:|:---------------------:|:---------------------:|:---------------------:|:-------------------:|:--------------------:|:---------------------:|:-------------------:|:-----------------------:|:-----------------------:|:---------------------:|:---------------------:|:-------------------:|:---------------------:|:----------------------:|:-----------------------:|:-------------------------------------:|:---------------------:|:---------------------:|:---------------------:|:-----------------------:|:---------------------:|:---------------------:|:---------------------:|:---------------------:|:---------------------:|:-----------------------:|:-----------------------:|:---------------------:|:-------------------------:|:-------------------:|:---------------------:|:---------------------------------------:|:---------------------:|:----------------------------:|:-----------------------:|:---------------------:|:---------------------:|:-------------------:|:-----------------------:|:---------------------:|:---------------------:|:----------------------:|:-------------------:|:---------------------:|:-------------------:|:---------------------:|:---------------------:|:---------------------:|:---------------------:|:-----------------------:|:-----------------------:|:---------------------------:|:---------------------:|:--------------------:|:-----------------------------------:|:---------------------:|:-------------------:|:-------------------:|:---------------------:|:--------------------------:|:---------------------:|:---------------------:|:---------------------:|:-------------------:|:---------------------:|:---------------------------:|:---------------------:|:-----------------------:|:-----------------------------------:|:---------------------:|:---------------------:|:-------------------:|:----------------------------------------:|:--------------------:|:---------------------:|:--------------------:|:-------------------:|:-------------------:|:---------------------:|-------:|
## |**Value**                   |                     |                       |                       |                       |                       |                       |                       |                         |                       |                       |                       |                      |                       |                       |                         |                       |                     |                       |                       |                               |                       |                       |                          |                       |                     |                     |                       |                     |                     |                       |                       |                                 |                     |                        |                       |                       |                       |                       |                      |                                          |                       |                       |                       |                       |                       |                         |                      |                           |                       |                       |                       |                          |                     |                       |                       |                     |                       |                        |                         |                         |                       |                     |                       |                        |                      |                       |                        |                       |                     |                      |                       |                     |                       |                         |                       |                        |                       |                       |                                  |                       |                         |                       |                         |                       |                       |                       |                       |                     |                                               |                           |                        |                       |                                         |                       |                       |                     |                     |                       |                       |                         |                         |                     |                     |                       |                       |                     |                        |                       |                       |                       |                             |                       |                       |                       |                     |                      |                       |                     |                         |                         |                       |                       |                     |                       |                        |                         |                                       |                       |                       |                       |                         |                       |                       |                       |                       |                       |                         |                         |                       |                           |                     |                       |                                         |                       |                              |                         |                       |                       |                     |                         |                       |                       |                        |                     |                       |                     |                       |                       |                       |                       |                         |                         |                             |                       |                      |                                     |                       |                     |                     |                       |                            |                       |                       |                       |                     |                       |                             |                       |                         |                                     |                       |                       |                     |                                          |                      |                       |                      |                     |                     |                       | < 0.001|
## |&nbsp;&nbsp;&nbsp;Mean (SD) | 9359.800 (409.767)  | 31149.300 (1807.674)  | 41751.200 (2049.561)  | 20087.400 (1496.409)  | 56680.200 (1899.561)  | 30620.400 (4954.162)  | 95269.800 (3529.443)  |  109305.300 (1911.516)  |  30068.000 (797.536)  | 72694.600 (4674.283)  | 81722.900 (3536.810)  | 9491.000 (1240.419)  |  32197.400 (301.566)  | 36578.100 (1018.088)  |  120154.300 (2234.551)  | 17926.100 (1031.117)  | 7477.800 (427.736)  | 21529.800 (1839.159)  | 16923.600 (1553.025)  |     42641.600 (1953.918)      | 44468.300 (1253.839)  |  33498.800 (670.081)  |  139504.600 (7527.023)   | 46287.500 (2425.957)  | 5603.000 (463.809)  | 1945.500 (123.978)  | 13983.900 (2165.098)  | 6244.900 (989.442)  | 8102.100 (408.304)  | 91709.600 (2340.117)  |  17638.100 (562.342)  |       2574.300 (465.785)        | 4716.100 (329.496)  |  99632.700 (4065.382)  | 50566.800 (1502.980)  | 22150.900 (4551.050)  | 29086.700 (1264.697)  |  12060.400 (105.097)  |  9859.500 (473.323)  |            3047.300 (286.037)            | 41019.200 (2648.200)  | 65195.900 (2231.562)  | 32205.600 (1875.759)  | 58245.300 (1333.154)  | 74505.500 (3296.985)  |  111191.800 (3707.176)  | 11930.900 (1553.228) |   36418.200 (2751.243)    | 25427.500 (1271.958)  | 38081.500 (3300.784)  |  19893.500 (821.929)  |  81477.500 (19929.435)   | 3363.700 (289.594)  | 65120.200 (3631.592)  |  34511.200 (554.051)  | 3820.100 (656.239)  | 30480.600 (4098.078)  | 102079.600 (2196.284)  |  107105.400 (3048.820)  |  78378.700 (2733.572)   | 58494.200 (1898.454)  | 7170.000 (356.961)  | 25338.500 (3242.980)  | 102478.200 (2217.853)  | 11653.200 (1169.703) | 86100.800 (1938.579)  | 100326.600 (3141.186)  |  19941.600 (533.342)  | 6631.900 (686.898)  |  4597.800 (192.511)  | 25081.500 (2284.967)  | 4587.100 (100.669)  |  12930.500 (247.228)  |  111177.600 (5670.623)  | 64789.800 (2278.646)  |  90664.900 (6745.689)  | 15609.200 (2759.765)  | 21523.700 (2135.827)  |       46277.800 (2625.652)       | 45007.300 (2688.477)  | 151458.000 (25626.265)  | 90668.100 (3288.615)  |  110329.100 (1756.229)  | 22488.400 (1019.681)  | 77339.600 (1011.766)  | 46531.700 (1247.565)  | 48885.900 (4637.063)  | 9076.700 (415.110)  |               3099.700 (87.979)               |   75100.600 (3727.882)    | 101992.500 (10692.671) | 12081.100 (1447.326)  |          12397.300 (1751.755)           | 56993.000 (4241.074)  | 52465.600 (4852.991)  | 7782.100 (391.886)  | 3573.900 (206.147)  | 50145.100 (14979.567) | 66282.900 (4963.387)  |  240620.100 (5323.347)  | 222396.300 (25455.741)  |  3145.800 (71.738)  |  2543.900 (43.337)  | 53041.300 (3880.721)  | 36540.300 (2541.821)  | 6269.700 (408.060)  | 88027.600 (10017.010)  |  20565.300 (548.391)  | 45163.600 (3542.535)  |  45337.200 (862.676)  |    21728.100 (2713.828)     | 25779.700 (3896.292)  | 52702.100 (1493.241)  | 22750.900 (2045.054)  | 2847.600 (263.887)  | 8974.400 (1721.896)  | 32745.600 (1471.076)  | 5296.300 (500.248)  |  106911.500 (3052.767)  |  115686.300 (2424.126)  | 77362.800 (2724.652)  |  12539.100 (580.275)  | 3046.000 (282.385)  | 17760.100 (1420.669)  |  43285.800 (487.479)   |  120820.400 (3018.868)  |          26748.200 (710.554)          | 61284.600 (8464.270)  |  13182.700 (869.023)  | 60564.800 (6075.044)  |  13374.500 (1426.162)   | 25050.800 (1535.376)  | 21821.400 (1510.875)  | 17944.000 (2513.695)  | 62406.300 (4738.862)  | 70615.700 (1156.234)  |  119226.900 (2531.834)  |  130025.300 (4546.875)  | 55501.900 (6970.748)  |   52747.800 (2313.555)    | 3731.000 (433.268)  |  32063.000 (968.601)  |           28846.900 (396.818)           | 24598.700 (1265.057)  |     12769.300 (767.219)      |  125558.000 (4739.288)  | 12288.800 (1039.129)  | 34875.900 (1383.014)  | 5139.100 (626.473)  |  148445.400 (8328.323)  | 64797.400 (2474.990)  | 75999.800 (3682.700)  |   4630.200 (162.787)   |  1479.100 (40.534)  |  44426.100 (724.253)  | 5362.800 (835.670)  | 95101.200 (1872.262)  | 29645.400 (3673.821)  |  17524.100 (556.187)  | 49739.700 (2727.299)  |  104597.600 (3875.188)  |  120116.500 (2008.969)  |    14843.200 (4873.076)     | 91608.000 (4754.108)  | 11399.800 (1755.713) |         4955.100 (475.438)          | 28804.100 (3106.600)  | 8185.800 (352.699)  | 4250.600 (366.544)  | 19423.500 (1611.412)  |    59071.700 (2007.947)    | 34456.800 (1149.159)  | 74061.000 (5835.638)  | 31790.500 (6150.547)  | 5654.800 (153.149)  | 27801.400 (1234.782)  |    89519.600 (8185.854)     | 90900.600 (1395.549)  |  122450.300 (2739.975)  |        99258.100 (10218.263)        | 42719.200 (3232.592)  | 14111.000 (2080.878)  | 7457.800 (119.772)  |          63608.600 (17495.907)           | 10912.800 (1663.980) |  17264.800 (452.308)  | 13311.500 (4061.056) | 9354.500 (308.728)  | 6294.500 (569.730)  | 45584.250 (42107.871) |        |
## |&nbsp;&nbsp;&nbsp;Range     | 8794.000 - 9943.000 | 27399.000 - 33439.000 | 38950.000 - 43699.000 | 17297.000 - 21705.000 | 52790.000 - 58957.000 | 25297.000 - 40102.000 | 89581.000 - 99210.000 | 106515.000 - 112371.000 | 29124.000 - 31231.000 | 67086.000 - 78538.000 | 76456.000 - 86323.000 | 7709.000 - 11534.000 | 31445.000 - 32495.000 | 34587.000 - 37874.000 | 116249.000 - 122800.000 | 16332.000 - 19317.000 | 6851.000 - 8229.000 | 18025.000 - 23723.000 | 14384.000 - 18491.000 |     39350.000 - 45032.000     | 42048.000 - 45924.000 | 32677.000 - 34525.000 | 129057.000 - 150120.000  | 41866.000 - 49625.000 | 4783.000 - 6243.000 | 1763.000 - 2110.000 | 11101.000 - 17286.000 | 4818.000 - 7774.000 | 7522.000 - 8612.000 | 87797.000 - 94634.000 | 16941.000 - 18867.000 |       2141.000 - 3376.000       | 4290.000 - 5154.000 | 93378.000 - 104611.000 | 47690.000 - 52153.000 | 15687.000 - 29363.000 | 26947.000 - 31182.000 | 11887.000 - 12259.000 | 8993.000 - 10454.000 |           2525.000 - 3335.000            | 37234.000 - 44074.000 | 60813.000 - 68355.000 | 28996.000 - 34638.000 | 55560.000 - 59721.000 | 70703.000 - 80539.000 | 105854.000 - 116692.000 | 9882.000 - 14559.000 |   33283.000 - 40628.000   | 24012.000 - 27674.000 | 34212.000 - 43931.000 | 18808.000 - 21131.000 |  51613.000 - 105037.000  | 3003.000 - 4051.000 | 61153.000 - 72479.000 | 33789.000 - 35497.000 | 2882.000 - 4790.000 | 25197.000 - 35502.000 | 99852.000 - 105600.000 | 102274.000 - 111772.000 |  75466.000 - 83209.000  | 55421.000 - 60495.000 | 6825.000 - 8056.000 | 20717.000 - 31066.000 | 99349.000 - 105427.000 | 9258.000 - 13290.000 | 83401.000 - 88737.000 | 96508.000 - 104874.000 | 18467.000 - 20380.000 | 5779.000 - 7704.000 | 4360.000 - 4909.000  | 21370.000 - 28543.000 | 4368.000 - 4706.000 | 12638.000 - 13445.000 | 103893.000 - 119741.000 | 62705.000 - 70088.000 | 84788.000 - 103296.000 | 11945.000 - 19693.000 | 18360.000 - 24425.000 |      41360.000 - 49423.000       | 40381.000 - 48324.000 | 124610.000 - 187658.000 | 86383.000 - 96573.000 | 108643.000 - 113700.000 | 20752.000 - 23592.000 | 75611.000 - 78759.000 | 45339.000 - 48684.000 | 41390.000 - 56446.000 | 8580.000 - 9848.000 |              2899.000 - 3192.000              |   70117.000 - 81060.000   | 88471.000 - 115511.000 | 10138.000 - 14264.000 |          9843.000 - 14887.000           | 50838.000 - 64221.000 | 44309.000 - 60334.000 | 6995.000 - 8304.000 | 3260.000 - 3910.000 | 30085.000 - 80453.000 | 59615.000 - 75717.000 | 231570.000 - 249868.000 | 194060.000 - 265200.000 | 3058.000 - 3267.000 | 2475.000 - 2600.000 | 48813.000 - 59364.000 | 34120.000 - 41621.000 | 5743.000 - 6869.000 | 77607.000 - 103313.000 | 19534.000 - 21204.000 | 40034.000 - 51105.000 | 43960.000 - 46390.000 |    18570.000 - 26506.000    | 18584.000 - 29905.000 | 50494.000 - 54911.000 | 19698.000 - 25322.000 | 2374.000 - 3078.000 | 6689.000 - 11548.000 | 31092.000 - 35211.000 | 4529.000 - 6055.000 | 103118.000 - 110932.000 | 110049.000 - 118487.000 | 73912.000 - 82100.000 | 11648.000 - 13422.000 | 2574.000 - 3385.000 | 15288.000 - 19134.000 | 42419.000 - 44047.000  | 117219.000 - 124972.000 |         25920.000 - 28082.000         | 52740.000 - 78622.000 | 12245.000 - 14556.000 | 49249.000 - 67184.000 |  11587.000 - 14858.000  | 22207.000 - 26774.000 | 18832.000 - 23344.000 | 14955.000 - 21832.000 | 55547.000 - 71046.000 | 68574.000 - 72660.000 | 115354.000 - 122964.000 | 123661.000 - 138639.000 | 46495.000 - 66848.000 |   48634.000 - 56659.000   | 3084.000 - 4468.000 | 30883.000 - 33876.000 |          28229.000 - 29420.000          | 23147.000 - 26257.000 |    11737.000 - 13640.000     | 119151.000 - 133454.000 | 11154.000 - 13910.000 | 33139.000 - 36958.000 | 4267.000 - 6278.000 | 136243.000 - 160348.000 | 61033.000 - 68993.000 | 71054.000 - 82608.000 |  4184.000 - 4750.000   | 1419.000 - 1535.000 | 43508.000 - 45455.000 | 4286.000 - 6365.000 | 91652.000 - 97280.000 | 23511.000 - 34990.000 | 16375.000 - 18329.000 | 46471.000 - 52974.000 | 100470.000 - 110270.000 | 117860.000 - 123736.000 |    11576.000 - 24648.000    | 85368.000 - 99189.000 | 9158.000 - 14501.000 |         4206.000 - 5623.000         | 24542.000 - 33502.000 | 7704.000 - 8632.000 | 3701.000 - 4771.000 | 17118.000 - 21350.000 |   56463.000 - 60916.000    | 32486.000 - 36031.000 | 64341.000 - 81694.000 | 21669.000 - 40307.000 | 5340.000 - 5923.000 | 25419.000 - 29280.000 |    77311.000 - 98205.000    | 88575.000 - 92646.000 | 118879.000 - 127046.000 |       92961.000 - 122431.000        | 37451.000 - 46795.000 | 11089.000 - 17181.000 | 7268.000 - 7674.000 |          28945.000 - 79334.000           | 8833.000 - 13817.000 | 16473.000 - 17826.000 | 8678.000 - 18921.000 | 8880.000 - 9734.000 | 4984.000 - 6891.000 | 1419.000 - 265200.000 |        |

(1-3) Changes in the distribution of the dependent variable between 2010 and 2019, by country

library(CGPfunctions)
library(magrittr)

## 
## Attaching package: 'magrittr'

## The following object is masked from 'package:arsenal':
## 
##     set_attr

library(dplyr)

## 
## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats':
## 
##     filter, lag

## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union

library(ggplot2)
lp_slope <- lpdata %>%
  filter(Year %in% c(2010, 2015, 2019) &
           Country %in% c("Afghanistan", "Argentina", "Australia", "Austria", "Bahamas", "Bangladesh", "Belgium", "Bhutan", "Bolivia", "Brazil", "Brunei Darussalam", "Cambodia", "Canada", "Chad", "Chile", "China", "Chroatia",  "Djibouti", "Egypt", "Ethiopia", "France", "Gabon", "Germany", "Guatemala", "Honduras", "Hungary", "India", "Iraq", "Japan", "Korea, Republic of", "Luxembourg", "Macau, China", "Malaysia", "Mexico", "Myanmar", "Nepal", "Netherlands", "Pakistan", "Philippines", "Russian Federation", "Singapore", "South Africa", "Sri Lanka", "Switzerand", "Turkey", "Uganda", "United States", "Yemen", "Zimbabwe" )) %>%
  mutate(Year = factor(Year),
         Value = round(Value)) 

newggslopegraph(lp_slope, Year, Value, Country) +labs(title="Change in labour productivity, by country, from 2010 to 2019", check_overlap = T)

## 
## Converting 'Year' to an ordered factor

## Warning: ggrepel: 2 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps

## Warning: ggrepel: 2 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps

Table 1-1 above suggests that there was an overall 6.75% increase in the level of labour productivity between 2010 and 2019 across the globe. Figure 1-3 shows that labour productivity has generally increased in most of the countries at a gradual pace.

(2-1) The distribution of the independent variable by year

str(pedata)

## 'data.frame':    1780 obs. of  3 variables:
##  $ Country: chr  "Aruba" "Aruba" "Aruba" "Aruba" ...
##  $ Year   : int  2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 ...
##  $ Value  : num  91.8 91.6 92.4 NA NA ...

pedata_table <- tableby(Year ~ Value, data = pedata) 
summary(pedata_table, title = "Private Education Data")

## 
## 
## Table: Private Education Data
## 
## |                            |  2010 (N=178)   |  2011 (N=178)   |  2012 (N=178)   |  2013 (N=178)   |  2014 (N=178)   |  2015 (N=178)   |  2016 (N=178)   |  2017 (N=178)   |  2018 (N=178)   |  2019 (N=178)   | Total (N=1780)  | p value|
## |:---------------------------|:---------------:|:---------------:|:---------------:|:---------------:|:---------------:|:---------------:|:---------------:|:---------------:|:---------------:|:---------------:|:---------------:|-------:|
## |**Value**                   |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |   0.994|
## |&nbsp;&nbsp;&nbsp;N-Miss    |       55        |       47        |       54        |       54        |       47        |       45        |       48        |       54        |       56        |       119       |       579       |        |
## |&nbsp;&nbsp;&nbsp;Mean (SD) | 19.039 (19.558) | 18.531 (18.821) | 18.929 (19.579) | 19.410 (19.361) | 19.426 (18.624) | 19.667 (19.183) | 18.752 (18.339) | 19.386 (19.633) | 18.499 (18.132) | 22.024 (21.684) | 19.219 (19.109) |        |
## |&nbsp;&nbsp;&nbsp;Range     | 0.077 - 95.356  | 0.271 - 95.347  | 0.000 - 95.516  | 0.014 - 95.543  | 0.041 - 95.742  | 0.037 - 95.952  | 0.054 - 95.919  | 0.000 - 96.062  | 0.089 - 95.986  | 0.146 - 96.253  | 0.000 - 96.253  |        |

(2-2) The distribution of the independent variable by country

pedata_table_2 <- tableby(Country ~ Value, data = pedata) 
summary(pedata_table_2, title = "Private Education Data")

## 
## 
## Table: Private Education Data
## 
## |                            | Afghanistan (N=10) | Albania (N=10) | Algeria (N=10) | American Samoa (N=10) | Andorra (N=10) |  Angola (N=10)  | Antigua and Barbuda (N=10) | Argentina (N=10) |  Aruba (N=10)   | Australia (N=10) | Austria (N=10) | Azerbaijan (N=10) | Bahamas, The (N=10) | Bahrain (N=10)  | Bangladesh (N=10) | Barbados (N=10) | Belarus (N=10) | Belgium (N=10)  |  Belize (N=10)  |  Benin (N=10)   | Bermuda (N=10)  |  Bhutan (N=10)  | Bolivia (N=10)  | Bosnia and Herzegovina (N=10) | Botswana (N=10) |  Brazil (N=10)  | British Virgin Islands (N=10) | Brunei Darussalam (N=10) | Bulgaria (N=10) | Burkina Faso (N=10) | Burundi (N=10) | Cabo Verde (N=10) | Cambodia (N=10) | Cameroon (N=10) | Canada (N=10) | Cayman Islands (N=10) | Central African Republic (N=10) |   Chad (N=10)   |  Chile (N=10)   |  China (N=10)  | Colombia (N=10) | Comoros (N=10)  | Congo, Dem. Rep. (N=10) | Congo, Rep. (N=10) | Costa Rica (N=10) | Cote d'Ivoire (N=10) | Croatia (N=10) |  Cyprus (N=10)  | Czech Republic (N=10) | Denmark (N=10)  | Djibouti (N=10) | Dominica (N=10) | Dominican Republic (N=10) | Ecuador (N=10)  | Egypt, Arab Rep. (N=10) | El Salvador (N=10) | Eritrea (N=10) | Estonia (N=10) | Ethiopia (N=10) | Fiji (N=10) | Finland (N=10) |  France (N=10)  | Georgia (N=10) | Germany (N=10) |  Ghana (N=10)   | Gibraltar (N=10) | Greece (N=10) | Grenada (N=10)  | Guatemala (N=10) |  Guinea (N=10)  | Guyana (N=10) | Honduras (N=10) | Hong Kong SAR, China (N=10) | Hungary (N=10)  | Iceland (N=10)  |  India (N=10)   | Indonesia (N=10) | Iran, Islamic Rep. (N=10) | Ireland (N=10) |  Israel (N=10)  | Italy (N=10)  | Jamaica (N=10) |  Japan (N=10)   |  Jordan (N=10)  | Kazakhstan (N=10) | Kenya (N=10) | Korea, Rep. (N=10) |  Kuwait (N=10)  | Kyrgyz Republic (N=10) | Lao PDR (N=10) | Latvia (N=10) | Lebanon (N=10)  | Lesotho (N=10) | Liberia (N=10)  | Libya (N=10) | Liechtenstein (N=10) | Lithuania (N=10) | Luxembourg (N=10) | Macao SAR, China (N=10) | Madagascar (N=10) | Malawi (N=10)  | Malaysia (N=10) | Maldives (N=10) |   Mali (N=10)   |  Malta (N=10)   | Marshall Islands (N=10) | Mauritania (N=10) | Mauritius (N=10) |  Mexico (N=10)  | Moldova (N=10) |  Monaco (N=10)  | Mongolia (N=10) | Morocco (N=10) | Mozambique (N=10) | Myanmar (N=10) | Namibia (N=10) | Nepal (N=10) | Netherlands (N=10) | New Zealand (N=10) | Nicaragua (N=10) |  Niger (N=10)   | Nigeria (N=10)  | North Macedonia (N=10) | Norway (N=10) |  Oman (N=10)   | Pakistan (N=10) | Palau (N=10) |  Panama (N=10)  | Paraguay (N=10) |   Peru (N=10)   | Philippines (N=10) | Poland (N=10)  | Portugal (N=10) | Puerto Rico (N=10) |  Qatar (N=10)   | Romania (N=10) | Russian Federation (N=10) |  Rwanda (N=10)  |  Samoa (N=10)   | Saudi Arabia (N=10) | Senegal (N=10)  | Serbia (N=10) | Seychelles (N=10) | Sierra Leone (N=10) | Singapore (N=10) | Slovak Republic (N=10) | Slovenia (N=10) | Solomon Islands (N=10) | South Africa (N=10) |  Spain (N=10)   | Sri Lanka (N=10) | St. Lucia (N=10) |  Sudan (N=10)   | Suriname (N=10) |  Sweden (N=10)  | Switzerland (N=10) | Syrian Arab Republic (N=10) | Tajikistan (N=10) | Tanzania (N=10) | Thailand (N=10) | Timor-Leste (N=10) |   Togo (N=10)   |  Tonga (N=10)   | Tunisia (N=10) | Turkey (N=10) | Turks and Caicos Islands (N=10) |  Tuvalu (N=10)  | Uganda (N=10) | Ukraine (N=10) | United Arab Emirates (N=10) | United Kingdom (N=10) | United States (N=10) | Uruguay (N=10)  | Uzbekistan (N=10) | Venezuela, RB (N=10) | West Bank and Gaza (N=10) | Yemen, Rep. (N=10) | Zimbabwe (N=10) | Total (N=1780)  | p value|
## |:---------------------------|:------------------:|:--------------:|:--------------:|:---------------------:|:--------------:|:---------------:|:--------------------------:|:----------------:|:---------------:|:----------------:|:--------------:|:-----------------:|:-------------------:|:---------------:|:-----------------:|:---------------:|:--------------:|:---------------:|:---------------:|:---------------:|:---------------:|:---------------:|:---------------:|:-----------------------------:|:---------------:|:---------------:|:-----------------------------:|:------------------------:|:---------------:|:-------------------:|:--------------:|:-----------------:|:---------------:|:---------------:|:-------------:|:---------------------:|:-------------------------------:|:---------------:|:---------------:|:--------------:|:---------------:|:---------------:|:-----------------------:|:------------------:|:-----------------:|:--------------------:|:--------------:|:---------------:|:---------------------:|:---------------:|:---------------:|:---------------:|:-------------------------:|:---------------:|:-----------------------:|:------------------:|:--------------:|:--------------:|:---------------:|:-----------:|:--------------:|:---------------:|:--------------:|:--------------:|:---------------:|:----------------:|:-------------:|:---------------:|:----------------:|:---------------:|:-------------:|:---------------:|:---------------------------:|:---------------:|:---------------:|:---------------:|:----------------:|:-------------------------:|:--------------:|:---------------:|:-------------:|:--------------:|:---------------:|:---------------:|:-----------------:|:------------:|:------------------:|:---------------:|:----------------------:|:--------------:|:-------------:|:---------------:|:--------------:|:---------------:|:------------:|:--------------------:|:----------------:|:-----------------:|:-----------------------:|:-----------------:|:--------------:|:---------------:|:---------------:|:---------------:|:---------------:|:-----------------------:|:-----------------:|:----------------:|:---------------:|:--------------:|:---------------:|:---------------:|:--------------:|:-----------------:|:--------------:|:--------------:|:------------:|:------------------:|:------------------:|:----------------:|:---------------:|:---------------:|:----------------------:|:-------------:|:--------------:|:---------------:|:------------:|:---------------:|:---------------:|:---------------:|:------------------:|:--------------:|:---------------:|:------------------:|:---------------:|:--------------:|:-------------------------:|:---------------:|:---------------:|:-------------------:|:---------------:|:-------------:|:-----------------:|:-------------------:|:----------------:|:----------------------:|:---------------:|:----------------------:|:-------------------:|:---------------:|:----------------:|:----------------:|:---------------:|:---------------:|:---------------:|:------------------:|:---------------------------:|:-----------------:|:---------------:|:---------------:|:------------------:|:---------------:|:---------------:|:--------------:|:-------------:|:-------------------------------:|:---------------:|:-------------:|:--------------:|:---------------------------:|:---------------------:|:--------------------:|:---------------:|:-----------------:|:--------------------:|:-------------------------:|:------------------:|:---------------:|:---------------:|-------:|
## |**Value**                   |                    |                |                |                       |                |                 |                            |                  |                 |                  |                |                   |                     |                 |                   |                 |                |                 |                 |                 |                 |                 |                 |                               |                 |                 |                               |                          |                 |                     |                |                   |                 |                 |               |                       |                                 |                 |                 |                |                 |                 |                         |                    |                   |                      |                |                 |                       |                 |                 |                 |                           |                 |                         |                    |                |                |                 |             |                |                 |                |                |                 |                  |               |                 |                  |                 |               |                 |                             |                 |                 |                 |                  |                           |                |                 |               |                |                 |                 |                   |              |                    |                 |                        |                |               |                 |                |                 |              |                      |                  |                   |                         |                   |                |                 |                 |                 |                 |                         |                   |                  |                 |                |                 |                 |                |                   |                |                |              |                    |                    |                  |                 |                 |                        |               |                |                 |              |                 |                 |                 |                    |                |                 |                    |                 |                |                           |                 |                 |                     |                 |               |                   |                     |                  |                        |                 |                        |                     |                 |                  |                  |                 |                 |                 |                    |                             |                   |                 |                 |                    |                 |                 |                |               |                                 |                 |               |                |                             |                       |                      |                 |                   |                      |                           |                    |                 |                 |        |
## |&nbsp;&nbsp;&nbsp;N-Miss    |         3          |       3        |       8        |           4           |       1        |        7        |             3              |        2         |        7        |        6         |       1        |         8         |          1          |        0        |         2         |        2        |       1        |        1        |        2        |        5        |        4        |        1        |        1        |               0               |       10        |        1        |               1               |            1             |        1        |          0          |       0        |         1         |       10        |        4        |       1       |           6           |                8                |        2        |        1        |       0        |        1        |        6        |            6            |         10         |         0         |          4           |       1        |        1        |           2           |        1        |        1        |        6        |             0             |        1        |            5            |         1          |       3        |       1        |        7        |     10      |       1        |        1        |       3        |       1        |        1        |        7         |       1       |        4        |        0         |        8        |       7       |        1        |              0              |        2        |        1        |        4        |        1         |             3             |       2        |        1        |       1       |       1        |        1        |        2        |         0         |      10      |         1          |        5        |           4            |       1        |       1       |        0        |       4        |        8        |      10      |          2           |        1         |         1         |            0            |         2         |       4        |        0        |        8        |        4        |        1        |            8            |         1         |        0         |        1        |       0        |        0        |        9        |       7        |         3         |       6        |       10       |      10      |         4          |         1          |        9         |        4        |        3        |           3            |       1       |       2        |        0        |      10      |        4        |        6        |        1        |         6          |       1        |        1        |         2          |        0        |       1        |             2             |        0        |        5        |          5          |        8        |       0       |         0         |          4          |        7         |           1            |        1        |           7            |          3          |        1        |        6         |        0         |        4        |        3        |        1        |         2          |              6              |         8         |        6        |        0        |         0          |        8        |        5        |       4        |       3       |                8                |        7        |      10       |       0        |              8              |           2           |          1           |        2        |         2         |          2           |             0             |         6          |        9        |       579       |        |
## |&nbsp;&nbsp;&nbsp;Mean (SD) |   2.788 (1.134)    | 7.758 (1.183)  | 0.174 (0.137)  |     2.263 (0.322)     | 2.631 (0.367)  | 14.344 (6.173)  |       18.131 (0.825)       |  26.151 (0.516)  | 91.909 (0.424)  |  43.726 (6.028)  | 10.028 (0.364) |  12.588 (0.428)   |   26.708 (4.131)    | 24.260 (1.682)  |  93.616 (2.461)   |  6.326 (0.633)  | 0.477 (0.039)  | 58.376 (0.422)  | 64.342 (3.059)  | 16.167 (2.276)  | 43.726 (0.868)  | 11.124 (0.807)  | 12.180 (0.477)  |         2.067 (0.451)         |       NA        | 13.822 (0.581)  |        17.477 (0.932)         |      15.549 (0.963)      |  3.082 (1.826)  |   40.556 (0.983)    | 8.315 (0.840)  |  10.281 (2.662)   |       NA        | 27.138 (1.069)  | 7.586 (0.452) |    30.090 (2.950)     |         22.813 (1.020)          | 18.890 (4.880)  | 60.612 (1.383)  | 11.192 (1.261) | 20.655 (0.345)  | 51.868 (2.385)  |     16.603 (1.440)      |         NA         |   9.096 (0.523)   |    51.299 (0.628)    | 2.026 (0.372)  | 17.855 (0.423)  |     9.148 (0.598)     | 14.083 (0.903)  |  9.869 (0.882)  | 30.629 (2.235)  |      19.226 (1.306)       | 29.092 (3.036)  |      7.564 (0.538)      |   16.775 (0.589)   | 6.074 (1.234)  | 3.636 (0.263)  | 10.760 (3.909)  |     NA      | 12.726 (2.777) | 25.731 (0.446)  | 10.376 (0.405) | 9.121 (0.391)  | 16.210 (0.590)  |  7.393 (2.979)   | 4.439 (0.219) | 62.999 (1.021)  |  62.425 (1.013)  | 32.776 (9.227)  | 7.625 (1.264) | 26.624 (1.761)  |       18.452 (1.686)        | 18.926 (4.413)  | 13.738 (0.946)  | 50.311 (1.312)  |  41.804 (0.712)  |      12.432 (1.045)       | 0.585 (0.211)  | 11.599 (0.493)  | 7.281 (0.673) | 2.946 (1.355)  | 19.792 (0.557)  | 19.945 (1.387)  |   5.176 (0.396)   |      NA      |   31.279 (0.281)   | 34.357 (1.821)  |     2.893 (0.110)      | 2.969 (0.234)  | 2.360 (0.950) | 60.237 (1.180)  | 1.380 (0.619)  | 59.174 (1.140)  |      NA      |    3.702 (0.911)     |  2.294 (0.905)   |  18.195 (0.356)   |     95.768 (0.314)      |  40.326 (2.779)   | 8.120 (1.680)  |  8.522 (2.340)  |  4.980 (0.296)  | 37.523 (4.863)  | 34.909 (2.688)  |     19.410 (1.943)      |  26.544 (1.673)   |  57.712 (0.988)  | 13.339 (0.244)  | 1.518 (0.263)  | 27.273 (4.752)  |   7.205 (NA)    | 10.331 (0.391) |  11.443 (1.566)   | 4.052 (1.916)  |       NA       |      NA      |   5.294 (1.602)    |   10.862 (3.288)   |   21.834 (NA)    | 17.672 (1.896)  | 21.011 (2.203)  |     0.980 (0.476)      | 7.387 (0.435) | 10.760 (2.027) | 32.765 (1.887)  |      NA      | 16.292 (0.158)  | 21.507 (0.345)  | 28.005 (2.204)  |   20.165 (3.090)   | 8.926 (3.432)  | 16.831 (0.535)  |   24.641 (1.680)   | 44.365 (3.705)  | 1.375 (0.304)  |       1.122 (0.205)       | 16.404 (4.094)  | 32.542 (1.069)  |   12.290 (0.637)    | 22.118 (1.615)  | 0.592 (0.180) |  10.194 (2.259)   |    8.874 (1.448)    |  4.791 (0.496)   |     10.725 (0.756)     |  2.644 (1.164)  |     31.609 (2.154)     |    4.256 (0.458)    | 28.230 (1.222)  |  7.043 (0.412)   |  3.352 (0.302)   | 16.341 (2.905)  |  0.869 (0.134)  | 17.778 (1.527)  |   10.984 (1.709)   |        3.905 (0.245)        |   1.160 (0.126)   | 18.660 (0.424)  | 12.992 (2.841)  |   24.673 (0.930)   | 25.141 (2.645)  | 67.265 (2.356)  | 6.337 (1.248)  | 5.078 (2.055) |         18.675 (5.404)          | 18.168 (10.304) |      NA       | 0.436 (0.096)  |       64.991 (2.031)        |    56.658 (20.254)    |    8.426 (0.397)     | 12.424 (0.626)  |   0.056 (0.046)   |    30.763 (2.079)    |       6.605 (0.643)       |   3.960 (0.411)    |   77.410 (NA)   | 19.219 (19.109) |        |
## |&nbsp;&nbsp;&nbsp;Range     |   1.274 - 4.458    | 6.144 - 9.463  | 0.077 - 0.271  |     1.706 - 2.645     | 2.045 - 3.058  | 10.584 - 21.468 |      16.712 - 19.505       | 25.366 - 26.830  | 91.570 - 92.384 | 40.457 - 52.759  | 9.488 - 10.542 |  12.285 - 12.891  |   17.744 - 31.064   | 21.249 - 26.118 |  87.602 - 95.115  |  5.316 - 7.301  | 0.421 - 0.559  | 57.616 - 58.765 | 60.622 - 70.352 | 12.972 - 18.682 | 42.829 - 45.247 | 10.052 - 12.503 | 11.499 - 12.754 |         1.457 - 2.748         |       NA        | 12.878 - 14.981 |        15.913 - 18.830        |     13.523 - 16.813      |  1.030 - 5.374  |   38.777 - 41.857   | 6.859 - 9.252  |  7.444 - 13.711   |       NA        | 25.442 - 28.260 | 6.985 - 8.352 |    27.726 - 34.379    |         22.091 - 23.534         | 14.821 - 26.280 | 57.909 - 61.913 | 9.830 - 13.650 | 20.214 - 21.185 | 49.653 - 55.012 |     14.957 - 18.470     |         NA         |   7.938 - 9.656   |   50.566 - 52.069    | 1.469 - 2.354  | 17.244 - 18.646 |    8.170 - 10.064     | 12.914 - 15.639 | 8.867 - 11.617  | 28.702 - 33.580 |      17.805 - 21.580      | 25.978 - 33.388 |      6.978 - 8.370      |  16.135 - 18.007   | 4.554 - 7.471  | 3.314 - 4.165  | 6.620 - 14.387  |     NA      | 8.310 - 14.859 | 25.205 - 26.169 | 9.945 - 11.070 | 8.480 - 9.632  | 15.403 - 17.184 |  4.381 - 10.338  | 4.205 - 4.811 | 61.594 - 64.453 | 60.309 - 63.445  | 26.251 - 39.300 | 6.235 - 8.706 | 24.483 - 30.192 |       16.470 - 21.012       | 12.864 - 22.444 | 12.290 - 14.970 | 47.995 - 51.888 | 40.913 - 43.356  |      10.527 - 13.556      | 0.213 - 0.747  | 10.517 - 12.096 | 6.761 - 8.520 | 1.784 - 5.150  | 19.132 - 20.706 | 18.583 - 21.727 |   4.671 - 5.718   |      NA      |  30.752 - 31.669   | 31.516 - 36.371 |     2.720 - 3.006      | 2.690 - 3.312  | 1.151 - 3.750 | 58.117 - 62.203 | 0.850 - 2.559  | 58.368 - 59.981 |      NA      |    2.508 - 5.064     |  1.096 - 3.461   |  17.717 - 18.804  |     95.347 - 96.253     |  35.995 - 43.098  | 5.919 - 10.232 | 4.487 - 11.253  |  4.770 - 5.189  | 31.260 - 43.767 | 28.945 - 37.980 |     18.036 - 20.784     |  24.565 - 29.360  | 56.587 - 59.596  | 13.068 - 13.790 | 1.250 - 2.027  | 21.741 - 32.582 |  7.205 - 7.205  | 9.940 - 10.722 |  9.477 - 13.329   | 1.268 - 5.580  |       NA       |      NA      |   3.320 - 7.177    |   9.082 - 19.485   | 21.834 - 21.834  | 14.816 - 19.393 | 18.699 - 24.182 |     0.000 - 1.510      | 6.904 - 8.165 | 6.975 - 13.068 | 30.878 - 35.830 |      NA      | 16.111 - 16.472 | 21.007 - 21.802 | 24.099 - 30.050 |  18.079 - 24.730   | 4.148 - 11.467 | 16.075 - 17.575 |  21.278 - 27.205   | 38.603 - 49.181 | 1.067 - 1.838  |       0.763 - 1.306       | 11.335 - 24.246 | 30.904 - 33.827 |   11.464 - 13.036   | 20.976 - 23.260 | 0.413 - 0.948 |  6.738 - 12.897   |   6.971 - 10.790    |  4.228 - 5.166   |     9.621 - 11.885     |  1.485 - 4.192  |    29.846 - 34.010     |    3.679 - 5.038    | 26.944 - 30.233 |  6.441 - 7.329   |  2.828 - 3.746   | 13.254 - 20.347 |  0.778 - 1.157  | 16.291 - 20.967 |   7.370 - 12.080   |        3.596 - 4.191        |   1.071 - 1.249   | 18.047 - 19.016 | 10.481 - 16.784 |  23.338 - 26.490   | 23.271 - 27.011 | 64.221 - 69.297 | 4.766 - 7.467  | 3.039 - 7.816 |         14.854 - 22.496         | 6.661 - 26.540  |      NA       | 0.368 - 0.647  |       63.555 - 66.427       |    29.316 - 74.760    |    7.911 - 8.953     | 11.423 - 13.002 |   0.000 - 0.146   |   28.299 - 33.311    |       5.450 - 7.286       |   3.468 - 4.453    | 77.410 - 77.410 | 0.000 - 96.253  |        |

(2-3) Changes in the distribution of the independent variable between 2010 and 2018, by country (The figure presents the year 2018 instead of 2019 as many countries miss the latest data for the year)

pe_slope <- pedata %>%
  filter(Year %in% c(2010, 2015, 2018) &
           Country %in% c("Andorra", "Austria", "Bangladesh", "Brundi", "Belgium", "Bulgaria", "Bolivia", "Brazil", "Brunei Darussalam", "Swizerland", "Cyprus", "Czech Republic", "Denmark", "Ecuador", "Eritrea",  "Djibouti", "Spain", "Estonia", "France", "Finland", "Germany", "United Kingdom", "Iceland", "Hungary", "Indonesia", "Italy", "Japan", "Korea, Republic of", "Luxembourg", "Lao PDR", "Lebanon", "Lithuania", "Macao SAR, China", "Mexico", "Malaysia", "New Zealand", "Poland", "West Bank and Gaza", "Qatar", "Romania", "Slobak Republic", "Venezuela, RB", "Uganda", "United States", "Yemen", "Zimbabwe" )) %>%
  mutate(Year = factor(Year),
         Value = round(Value)) 

newggslopegraph(pe_slope, Year, Value, Country) +labs(title="Change in the share of private secondary education, by country, from 2010 to 2019", check_overlap = T)

## 
## Converting 'Year' to an ordered factor

Table 2-1 illustrates that the overall share of private secondary education has continuously remained at slightly below 20%, except the year 2019 when it marked above 22%. It is interesting to observe from Figure 2-3 that around 96% of the secondary education service has been provided by the private sector in Macao, China while it take s up only 1% in Bulgaria and Romania, implying that each country’s approaches to application of the privatization schemes in education enormously vary. Another interesting phenomenon is a stark increase in the share of private sector provision of secondary education from 29% to 75% over the last ten years in the UK.

4. Relationships between the independent variable and dependent variable

Before plotting the relationship between the independent Variable (lp_gdp) and dependent variable (pe_share), and further creating and analzing regression models, all 5 separate data sets introduced in the previous section has to be merged into one. Also the dependent variable will be lagged in an attempt to provide more robust estimates of the effects of the independent variable by overcoming omitted variable bias and accounting for autocorrelation. *After trying several different lag combinations, 3-year lag structure was selected based on Akaike (AIC) and Bayesian (BIC) information criteria.

##merging two main data sets: the main independent variable and dependent variable
dataset_merged1 <- merge(lpdata, pedata, by=c("Country","Year"))
dataset_merged1 <- dataset_merged1 %>% 
  rename(
    lp_gdp = Value.x,
    pe_share = Value.y
    )
##lagging the dependent variable
library(Hmisc)

## Loading required package: lattice

## Loading required package: Formula

## 
## Attaching package: 'Hmisc'

## The following objects are masked from 'package:dplyr':
## 
##     src, summarize

## The following object is masked from 'package:arsenal':
## 
##     %nin%

## The following objects are masked from 'package:base':
## 
##     format.pval, units

dataset_merged1$lp_gdp_lagged <- Lag(dataset_merged1$lp_gdp, -3)
lagged_lpgdp_data <- dplyr::select(dataset_merged1, Country, Year, pe_share, lp_gdp, lp_gdp_lagged)
head(lagged_lpgdp_data, addrownums = FALSE)

##       Country Year pe_share lp_gdp lp_gdp_lagged
## 1 Afghanistan 2010       NA   9573          9943
## 2 Afghanistan 2011  1.27354   9219          9697
## 3 Afghanistan 2012  1.94761   9910          9365
## 4 Afghanistan 2013       NA   9943          9178
## 5 Afghanistan 2014  1.97750   9697          9048
## 6 Afghanistan 2015  2.72148   9365          8871

##further merging the data sets for control variables
dataset_merged2 <- merge(lagged_lpgdp_data, working_hr, by=c("Country","Year"))
dataset_merged2 <- dataset_merged2 %>% 
  rename(
    mwwhour = Value
    )

dataset_merged3 <- merge(dataset_merged2, conpri_health, by=c("Country","Year"))
dataset_merged3 <- dataset_merged3 %>% 
  rename(
    healthconpri = Value
    )

dataset_merged4 <- merge(dataset_merged3, edu_price, by=c("Country","Year"))
dataset_merged4 <- dataset_merged4 %>% 
  rename(
   educost = Value
    )


##filtering years that are lagged
library(dplyr)
data_filtered <- filter(dataset_merged4, Year >=2010 & Year < 2017)

After merging and filtering, countries that are covered in all 5 separate data sets between 2010 and 2016 are left. Through this we obtain a total of 764 observations with 8 variables.

Using this tailored data set, relationship between the independent variables and the dependent variable were plotted below.

plot(lm(data_filtered$lp_gdp_lagged ~ data_filtered$pe_share))

The plot shows that the scatter pattern of the residuals over the range of measured values is clearly unequal, meaning that we can detect heteroskedasticity. The plot also supports the occurrence of heteroskedasticity. I choose not to correct for this heteroskedasticity as it is possible that the variance of the least squares estimator would be not too huge and therefore would not hamper from getting precise estimates, having the large sample size.

5.Regression results for models

First, three regression models (pooled OLS, fixed-effects and random-effects) that do not include control variables were prepared below. While using pooled OLS is often considered problematic in a panel context as it ignores all individually specific effects, it is worth trying to test it here.

ols1 <- lm(lp_gdp_lagged ~ pe_share, data_filtered)
library(sjPlot)

## #refugeeswelcome

tab_model(ols1, digits = 3)
 lp\_gdp\_lagged
PredictorsEstimatesCIp
(Intercept)62060.58956877.492 – 67243.686<0.001
pe\_share-268.902-466.435 – -71.3690.008
Observations591
R2 / R2 adjusted0.012 / 0.010
library(lme4)

## Loading required package: Matrix

fe1 <- lm(lp_gdp_lagged ~ pe_share + factor(Country), data = data_filtered)
tab_model(fe1, digits = 3)
 lp\_gdp\_lagged
PredictorsEstimatesCIp
(Intercept)8610.5364528.714 – 12692.358<0.001
pe\_share108.538-12.435 – 229.5100.079
Country Albania23028.37117853.127 – 28203.615<0.001
Country Angola9992.2854068.616 – 15915.9550.001
Country Argentina41297.86432664.483 – 49931.245<0.001
Country Australia86073.46178161.640 – 93985.282<0.001
Country Austria100307.99395367.721 – 105248.265<0.001
Country Bahrain71696.65966216.419 – 77176.899<0.001
Country Bangladesh-8819.769-20998.941 – 3359.4030.155
Country Barbados22832.77417670.906 – 27994.641<0.001
Country Belarus28194.44523324.007 – 33064.883<0.001
Country Belgium106331.59998034.816 – 114628.381<0.001
Country Belize2183.220-6651.399 – 11017.8390.627
Country Benin-2569.466-7967.415 – 2828.4840.350
Country Bhutan13112.2437866.012 – 18358.474<0.001
Country Bolivia7800.3862799.494 – 12801.2770.002
Country BosniaandHerzegovina34883.29530019.176 – 39747.414<0.001
Country BruneiDarussalam124750.196119535.750 – 129964.642<0.001
Country Bulgaria38460.51533597.511 – 43323.520<0.001
Country BurkinaFaso-6742.397-14577.661 – 1092.8670.092
Country Burundi-7650.669-12569.249 – -2732.0900.002
Country Cameroon-3138.646-9093.953 – 2816.6600.301
Country Canada85154.47878691.926 – 91617.029<0.001
Country Chad-5992.857-12607.696 – 621.9830.076
Country Chile36251.20627760.446 – 44741.966<0.001
Country Colombia18901.25913573.724 – 24228.794<0.001
Country Comoros-2055.745-10668.812 – 6557.3230.639
Country CostaRica32467.60327538.577 – 37396.629<0.001
Country Croatia57392.31052528.455 – 62256.166<0.001
Country Cyprus47546.14142355.844 – 52736.439<0.001
Country Denmark102857.25997815.685 – 107898.833<0.001
Country Djibouti3888.911-1550.888 – 9328.7090.161
Country DominicanRepublic26968.50221686.794 – 32250.210<0.001
Country Ecuador13665.9427790.274 – 19541.610<0.001
Country ElSalvador9820.9904666.951 – 14975.028<0.001
Country Estonia57464.20352599.932 – 62328.474<0.001
Country Ethiopia-5879.042-11714.890 – -43.1950.048
Country Finland92806.11687811.072 – 97801.160<0.001
Country France97143.20791530.068 – 102756.345<0.001
Country Georgia18753.60513290.767 – 24216.442<0.001
Country Germany93811.16988889.145 – 98733.192<0.001
Country Ghana2046.318-3361.476 – 7454.1110.458
Country Greece76643.06771775.471 – 81510.664<0.001
Country Guatemala4816.604-3919.750 – 13552.9580.279
Country Guinea-5336.918-12727.212 – 2053.3750.157
Country Honduras1316.588-4365.626 – 6998.8030.649
Country Hungary53496.84348190.244 – 58803.443<0.001
Country Iceland82933.02577897.094 – 87968.957<0.001
Country Ireland152939.726147950.715 – 157928.736<0.001
Country Israel82285.65977308.394 – 87262.924<0.001
Country Italy100003.82195107.839 – 104899.804<0.001
Country Jamaica12233.9775800.028 – 18667.925<0.001
Country Japan67140.71461867.139 – 72414.288<0.001
Country Jordan35411.07029901.884 – 40920.255<0.001
Country Kazakhstan41988.05637114.380 – 46861.733<0.001
Country Kuwait84601.65378187.135 – 91016.171<0.001
Country Latvia50039.95845176.237 – 54903.679<0.001
Country Lebanon34898.18326362.051 – 43434.314<0.001
Country Lesotho-781.296-5766.959 – 4204.3670.758
Country Liberia-11573.187-20956.579 – -2189.7940.016
Country Lithuania59693.50354829.760 – 64557.246<0.001
Country Luxembourg231069.001225863.239 – 236274.762<0.001
Country Madagascar-9658.019-16412.514 – -2903.5240.005
Country Malawi-6899.473-12319.588 – -1479.3580.013
Country Malaysia45184.49740276.454 – 50092.540<0.001
Country Mali-6179.716-12735.367 – 375.9360.065
Country Malta79678.12973462.055 – 85894.204<0.001
Country Mauritania9328.4163652.024 – 15004.8080.001
Country Mauritius31839.68623576.618 – 40102.755<0.001
Country Mexico35671.25630639.913 – 40702.599<0.001
Country Mongolia15744.4747588.970 – 23899.978<0.001
Country Mozambique-6831.258-11917.421 – -1745.0950.009
Country Myanmar2147.052-4286.095 – 8580.1980.512
Country Netherlands99690.18794303.417 – 105076.957<0.001
Country NewZealand68666.82863692.402 – 73641.255<0.001
Country Nicaragua1456.702-7003.196 – 9916.6000.735
Country Niger-7332.067-12811.038 – -1853.0960.009
Country Nigeria7683.3712339.970 – 13026.7720.005
Country NorthMacedonia34763.35929613.049 – 39913.669<0.001
Country Norway112792.837107896.431 – 117689.243<0.001
Country Oman46128.92340912.861 – 51344.984<0.001
Country Pakistan1380.769-4701.592 – 7463.1300.656
Country Panama53529.36248282.284 – 58776.440<0.001
Country Paraguay14384.9188541.811 – 20228.026<0.001
Country Peru10974.4295113.384 – 16835.474<0.001
Country Philippines10503.6384435.298 – 16571.9780.001
Country Poland54946.47450037.366 – 59855.582<0.001
Country Portugal60753.15355605.629 – 65900.677<0.001
Country Qatar114440.267107569.264 – 121311.269<0.001
Country RussianFederation45308.21840321.175 – 50295.261<0.001
Country Rwanda-6638.629-11845.494 – -1431.7640.013
Country Samoa12883.8756597.962 – 19169.788<0.001
Country SaudiArabia110441.418103891.828 – 116991.009<0.001
Country Senegal555.820-7876.283 – 8987.9230.897
Country Serbia25674.04220803.803 – 30544.280<0.001
Country SierraLeone-4268.633-9464.901 – 927.6350.107
Country Slovenia68659.70163796.377 – 73523.025<0.001
Country SouthAfrica35186.45630037.174 – 40335.737<0.001
Country Spain84504.71578776.871 – 90232.560<0.001
Country Sudan6420.349-236.480 – 13077.1780.059
Country Sweden95645.24490452.980 – 100837.508<0.001
Country Switzerland110991.737105917.251 – 116066.222<0.001
Country TimorLeste-3106.091-8872.075 – 2659.8920.290
Country Togo-6941.307-15450.405 – 1567.7920.110
Country Tunisia25794.20720791.820 – 30796.593<0.001
Country Turkey69720.93964571.527 – 74870.350<0.001
Country UnitedArabEmirates82384.58871175.828 – 93593.348<0.001
Country UnitedKingdom77307.13069651.981 – 84962.279<0.001
Country UnitedStates114231.963109322.538 – 119141.389<0.001
Country Uruguay34875.03929746.454 – 40003.624<0.001
Country Zimbabwe-10463.463-22624.252 – 1697.3250.092
Observations591
R2 / R2 adjusted0.995 / 0.993
library(stargazer)

## 
## Please cite as:

##  Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.

##  R package version 5.2.2. https://CRAN.R-project.org/package=stargazer

stargazer(ols1, fe1, type="text", title = "Regression Results for Models without Control Variables", column.labels = c("Pooled OLS", "Fixed-Effects"), dep.var.labels=c("Labour Productivity"), align=TRUE)

## 
## Regression Results for Models without Control Variables
## =======================================================================================
##                                                      Dependent variable:               
##                                       -------------------------------------------------
##                                                      Labour Productivity               
##                                             Pooled OLS             Fixed-Effects       
##                                                (1)                      (2)            
## ---------------------------------------------------------------------------------------
## pe_share                                   -268.902***                108.538*         
##                                             (100.577)                 (61.566)         
##                                                                                        
## factor(Country)Albania                                             23,028.370***       
##                                                                     (2,633.821)        
##                                                                                        
## factor(Country)Angola                                               9,992.285***       
##                                                                     (3,014.715)        
##                                                                                        
## factor(Country)Argentina                                           41,297.860***       
##                                                                     (4,393.760)        
##                                                                                        
## factor(Country)Australia                                           86,073.460***       
##                                                                     (4,026.539)        
##                                                                                        
## factor(Country)Austria                                             100,308.000***      
##                                                                     (2,514.238)        
##                                                                                        
## factor(Country)Bahrain                                             71,696.660***       
##                                                                     (2,789.042)        
##                                                                                        
## factor(Country)Bangladesh                                            -8,819.769        
##                                                                     (6,198.309)        
##                                                                                        
## factor(Country)Barbados                                            22,832.770***       
##                                                                     (2,627.014)        
##                                                                                        
## factor(Country)Belarus                                             28,194.440***       
##                                                                     (2,478.697)        
##                                                                                        
## factor(Country)Belgium                                             106,331.600***      
##                                                                     (4,222.456)        
##                                                                                        
## factor(Country)Belize                                                2,183.220         
##                                                                     (4,496.176)        
##                                                                                        
## factor(Country)Benin                                                 -2,569.466        
##                                                                     (2,747.162)        
##                                                                                        
## factor(Country)Bhutan                                              13,112.240***       
##                                                                     (2,669.949)        
##                                                                                        
## factor(Country)Bolivia                                              7,800.386***       
##                                                                     (2,545.089)        
##                                                                                        
## factor(Country)Bosnia and Herzegovina                              34,883.290***       
##                                                                     (2,475.481)        
##                                                                                        
## factor(Country)Brunei Darussalam                                   124,750.200***      
##                                                                     (2,653.772)        
##                                                                                        
## factor(Country)Bulgaria                                            38,460.510***       
##                                                                     (2,474.914)        
##                                                                                        
## factor(Country)Burkina Faso                                         -6,742.397*        
##                                                                     (3,987.577)        
##                                                                                        
## factor(Country)Burundi                                             -7,650.669***       
##                                                                     (2,503.198)        
##                                                                                        
## factor(Country)Cameroon                                              -3,138.646        
##                                                                     (3,030.816)        
##                                                                                        
## factor(Country)Canada                                              85,154.480***       
##                                                                     (3,288.967)        
##                                                                                        
## factor(Country)Chad                                                 -5,992.857*        
##                                                                     (3,366.470)        
##                                                                                        
## factor(Country)Chile                                               36,251.210***       
##                                                                     (4,321.177)        
##                                                                                        
## factor(Country)Colombia                                            18,901.260***       
##                                                                     (2,711.326)        
##                                                                                        
## factor(Country)Comoros                                               -2,055.745        
##                                                                     (4,383.422)        
##                                                                                        
## factor(Country)Costa Rica                                          32,467.600***       
##                                                                     (2,508.514)        
##                                                                                        
## factor(Country)Croatia                                             57,392.310***       
##                                                                     (2,475.347)        
##                                                                                        
## factor(Country)Cyprus                                              47,546.140***       
##                                                                     (2,641.482)        
##                                                                                        
## factor(Country)Denmark                                             102,857.300***      
##                                                                     (2,565.793)        
##                                                                                        
## factor(Country)Djibouti                                              3,888.911         
##                                                                     (2,768.460)        
##                                                                                        
## factor(Country)Dominican Republic                                  26,968.500***       
##                                                                     (2,688.004)        
##                                                                                        
## factor(Country)Ecuador                                             13,665.940***       
##                                                                     (2,990.286)        
##                                                                                        
## factor(Country)El Salvador                                          9,820.990***       
##                                                                     (2,623.029)        
##                                                                                        
## factor(Country)Estonia                                             57,464.200***       
##                                                                     (2,475.559)        
##                                                                                        
## factor(Country)Ethiopia                                             -5,879.042**       
##                                                                     (2,970.020)        
##                                                                                        
## factor(Country)Finland                                             92,806.120***       
##                                                                     (2,542.112)        
##                                                                                        
## factor(Country)France                                              97,143.210***       
##                                                                     (2,856.677)        
##                                                                                        
## factor(Country)Georgia                                             18,753.600***       
##                                                                     (2,780.186)        
##                                                                                        
## factor(Country)Germany                                             93,811.170***       
##                                                                     (2,504.950)        
##                                                                                        
## factor(Country)Ghana                                                 2,046.318         
##                                                                     (2,752.172)        
##                                                                                        
## factor(Country)Greece                                              76,643.070***       
##                                                                     (2,477.251)        
##                                                                                        
## factor(Country)Guatemala                                             4,816.604         
##                                                                     (4,446.166)        
##                                                                                        
## factor(Country)Guinea                                                -5,336.918        
##                                                                     (3,761.120)        
##                                                                                        
## factor(Country)Honduras                                              1,316.588         
##                                                                     (2,891.832)        
##                                                                                        
## factor(Country)Hungary                                             53,496.840***       
##                                                                     (2,700.672)        
##                                                                                        
## factor(Country)Iceland                                             82,933.020***       
##                                                                     (2,562.921)        
##                                                                                        
## factor(Country)Ireland                                             152,939.700***      
##                                                                     (2,539.042)        
##                                                                                        
## factor(Country)Israel                                              82,285.660***       
##                                                                     (2,533.064)        
##                                                                                        
## factor(Country)Italy                                               100,003.800***      
##                                                                     (2,491.698)        
##                                                                                        
## factor(Country)Jamaica                                             12,233.980***       
##                                                                     (3,274.410)        
##                                                                                        
## factor(Country)Japan                                               67,140.710***       
##                                                                     (2,683.864)        
##                                                                                        
## factor(Country)Jordan                                              35,411.070***       
##                                                                     (2,803.773)        
##                                                                                        
## factor(Country)Kazakhstan                                          41,988.060***       
##                                                                     (2,480.345)        
##                                                                                        
## factor(Country)Kuwait                                              84,601.650***       
##                                                                     (3,264.521)        
##                                                                                        
## factor(Country)Latvia                                              50,039.960***       
##                                                                     (2,475.279)        
##                                                                                        
## factor(Country)Lebanon                                             34,898.180***       
##                                                                     (4,344.267)        
##                                                                                        
## factor(Country)Lesotho                                                -781.296         
##                                                                     (2,537.338)        
##                                                                                        
## factor(Country)Liberia                                             -11,573.190**       
##                                                                     (4,775.462)        
##                                                                                        
## factor(Country)Lithuania                                           59,693.500***       
##                                                                     (2,475.290)        
##                                                                                        
## factor(Country)Luxembourg                                          231,069.000***      
##                                                                     (2,649.352)        
##                                                                                        
## factor(Country)Madagascar                                          -9,658.019***       
##                                                                     (3,437.545)        
##                                                                                        
## factor(Country)Malawi                                               -6,899.473**       
##                                                                     (2,758.443)        
##                                                                                        
## factor(Country)Malaysia                                            45,184.500***       
##                                                                     (2,497.836)        
##                                                                                        
## factor(Country)Mali                                                 -6,179.716*        
##                                                                     (3,336.348)        
##                                                                                        
## factor(Country)Malta                                               79,678.130***       
##                                                                     (3,163.528)        
##                                                                                        
## factor(Country)Mauritania                                           9,328.416***       
##                                                                     (2,888.869)        
##                                                                                        
## factor(Country)Mauritius                                           31,839.690***       
##                                                                     (4,205.298)        
##                                                                                        
## factor(Country)Mexico                                              35,671.260***       
##                                                                     (2,560.586)        
##                                                                                        
## factor(Country)Mongolia                                            15,744.470***       
##                                                                     (4,150.556)        
##                                                                                        
## factor(Country)Mozambique                                          -6,831.258***       
##                                                                     (2,588.485)        
##                                                                                        
## factor(Country)Myanmar                                               2,147.052         
##                                                                     (3,274.002)        
##                                                                                        
## factor(Country)Netherlands                                         99,690.190***       
##                                                                     (2,741.472)        
##                                                                                        
## factor(Country)New Zealand                                         68,666.830***       
##                                                                     (2,531.620)        
##                                                                                        
## factor(Country)Nicaragua                                             1,456.702         
##                                                                     (4,305.470)        
##                                                                                        
## factor(Country)Niger                                               -7,332.067***       
##                                                                     (2,788.396)        
##                                                                                        
## factor(Country)Nigeria                                              7,683.371***       
##                                                                     (2,719.401)        
##                                                                                        
## factor(Country)North Macedonia                                     34,763.360***       
##                                                                     (2,621.132)        
##                                                                                        
## factor(Country)Norway                                              112,792.800***      
##                                                                     (2,491.913)        
##                                                                                        
## factor(Country)Oman                                                46,128.920***       
##                                                                     (2,654.594)        
##                                                                                        
## factor(Country)Pakistan                                              1,380.769         
##                                                                     (3,095.477)        
##                                                                                        
## factor(Country)Panama                                              53,529.360***       
##                                                                     (2,670.379)        
##                                                                                        
## factor(Country)Paraguay                                            14,384.920***       
##                                                                     (2,973.715)        
##                                                                                        
## factor(Country)Peru                                                10,974.430***       
##                                                                     (2,982.844)        
##                                                                                        
## factor(Country)Philippines                                         10,503.640***       
##                                                                     (3,088.342)        
##                                                                                        
## factor(Country)Poland                                              54,946.470***       
##                                                                     (2,498.377)        
##                                                                                        
## factor(Country)Portugal                                            60,753.150***       
##                                                                     (2,619.714)        
##                                                                                        
## factor(Country)Qatar                                               114,440.300***      
##                                                                     (3,496.838)        
##                                                                                        
## factor(Country)Russian Federation                                  45,308.220***       
##                                                                     (2,538.041)        
##                                                                                        
## factor(Country)Rwanda                                               -6,638.629**       
##                                                                     (2,649.914)        
##                                                                                        
## factor(Country)Samoa                                               12,883.880***       
##                                                                     (3,199.071)        
##                                                                                        
## factor(Country)Saudi Arabia                                        110,441.400***      
##                                                                     (3,333.263)        
##                                                                                        
## factor(Country)Senegal                                                555.820          
##                                                                     (4,291.324)        
##                                                                                        
## factor(Country)Serbia                                              25,674.040***       
##                                                                     (2,478.596)        
##                                                                                        
## factor(Country)Sierra Leone                                          -4,268.633        
##                                                                     (2,644.521)        
##                                                                                        
## factor(Country)Slovenia                                            68,659.700***       
##                                                                     (2,475.077)        
##                                                                                        
## factor(Country)South Africa                                        35,186.460***       
##                                                                     (2,620.608)        
##                                                                                        
## factor(Country)Spain                                               84,504.710***       
##                                                                     (2,915.054)        
##                                                                                        
## factor(Country)Sudan                                                 6,420.349*        
##                                                                     (3,387.840)        
##                                                                                        
## factor(Country)Sweden                                              95,645.240***       
##                                                                     (2,642.483)        
##                                                                                        
## factor(Country)Switzerland                                         110,991.700***      
##                                                                     (2,582.543)        
##                                                                                        
## factor(Country)Timor-Leste                                           -3,106.091        
##                                                                     (2,934.465)        
##                                                                                        
## factor(Country)Togo                                                  -6,941.307        
##                                                                     (4,330.510)        
##                                                                                        
## factor(Country)Tunisia                                             25,794.210***       
##                                                                     (2,545.849)        
##                                                                                        
## factor(Country)Turkey                                              69,720.940***       
##                                                                     (2,620.674)        
##                                                                                        
## factor(Country)United Arab Emirates                                82,384.590***       
##                                                                     (5,704.440)        
##                                                                                        
## factor(Country)United Kingdom                                      77,307.130***       
##                                                                     (3,895.912)        
##                                                                                        
## factor(Country)United States                                       114,232.000***      
##                                                                     (2,498.539)        
##                                                                                        
## factor(Country)Uruguay                                             34,875.040***       
##                                                                     (2,610.075)        
##                                                                                        
## factor(Country)Zimbabwe                                             -10,463.460*       
##                                                                     (6,188.953)        
##                                                                                        
## Constant                                  62,060.590***             8,610.536***       
##                                            (2,639.052)              (2,077.349)        
##                                                                                        
## ---------------------------------------------------------------------------------------
## Observations                                   591                      591            
## R2                                            0.012                    0.995           
## Adjusted R2                                   0.010                    0.993           
## Residual Std. Error                   43,964.570 (df = 589)     3,586.478 (df = 480)   
## F Statistic                           7.148*** (df = 1; 589) 810.024*** (df = 110; 480)
## =======================================================================================
## Note:                                                       *p<0.1; **p<0.05; ***p<0.01

<Pooled OLS, Fixed-Effects, and Random-Effects>

library(plm)

## 
## Attaching package: 'plm'

## The following objects are masked from 'package:dplyr':
## 
##     between, lag, lead

pooledols1 <- plm(lp_gdp_lagged ~ pe_share, data=data_filtered, model = "pooling", index = c("Country", "Year"))
fixeff1 <- plm(lp_gdp_lagged ~ pe_share, data=data_filtered, model = "within", index = c("Country", "Year"))
randeff1 <- plm(lp_gdp_lagged ~ pe_share, data=data_filtered, model = "random", index = c("Country", "Year"))

library(stargazer)
stargazer(pooledols1, fixeff1, randeff1, type="text", title = "Regression Results for Models without Control Variables", column.labels = c("Pooled OLS", "Fixed-Effects", "Random-Effects") ,dep.var.labels=c("Labour Productivity"), align=TRUE)

## 
## Regression Results for Models without Control Variables
## =======================================================================
##                                 Dependent variable:                    
##              ----------------------------------------------------------
##                                 Labour Productivity                    
##                    Pooled OLS          Fixed-Effects     Random-Effects
##                       (1)                   (2)               (3)      
## -----------------------------------------------------------------------
## pe_share          -268.902***             108.538*           82.469    
##                    (100.577)              (61.566)          (59.395)   
##                                                                        
## Constant         62,060.590***                           49,722.330*** 
##                   (2,639.052)                             (4,380.876)  
##                                                                        
## -----------------------------------------------------------------------
## Observations          591                   591               591      
## R2                   0.012                 0.006             0.0001    
## Adjusted R2          0.010                 -0.221            -0.002    
## F Statistic  7.148*** (df = 1; 589) 3.108* (df = 1; 480)     1.928     
## =======================================================================
## Note:                                       *p<0.1; **p<0.05; ***p<0.01

The first regression results for models without control variables do not allow us to observe any statistically significant correlation between the share of private education and the level of productivity. Pooled OLS model shows that the share of private education (pe-share) is statistically significant at 95% confidence level, while it is statistically significant at 90% confidence level for the Fixed=Effects Model. However, the fact that: i) R-square value and adjusted R-square value are extremely low and even negative for the Fixed-Effects model and the Random-effects model; and ii) the overall significance of the model presented by F-statistic is low, suggests that the models hardly explains the variation in the dependent variable. These results let us conclude that none of the above models without control variable are a good fit.

It is followed by three additional regression models with three control variables included.

ols2 <- lm(lp_gdp_lagged ~ pe_share + mwwhour + healthconpri + educost, data_filtered)
tab_model(ols2, digits = 3)
 lp\_gdp\_lagged
PredictorsEstimatesCIp
(Intercept)58105.62848943.016 – 67268.240<0.001
pe\_share42.417-190.712 – 275.5460.721
mwwhour0.0050.000 – 0.0090.033
healthconpri2497.4641041.250 – 3953.6770.001
educost-5307.204-7392.403 – -3222.004<0.001
Observations577
R2 / R2 adjusted0.072 / 0.065
library(lme4)
fe2 <- lm(lp_gdp_lagged ~ pe_share + mwwhour + healthconpri + educost + factor(Country), data = data_filtered)
tab_model(fe2, digits = 3)
 lp\_gdp\_lagged
PredictorsEstimatesCIp
(Intercept)5363.991-866.914 – 11594.8970.091
pe\_share34.048-86.172 – 154.2690.578
mwwhour0.008-0.001 – 0.0170.072
healthconpri120.235-685.591 – 926.0610.769
educost798.586-101.767 – 1698.9380.082
Country Albania24923.50819050.324 – 30796.691<0.001
Country Angola9050.1572774.905 – 15325.4080.005
Country Argentina37757.62428598.115 – 46917.132<0.001
Country Australia85252.00077123.113 – 93380.887<0.001
Country Austria101494.69296407.363 – 106582.021<0.001
Country Bahrain71637.80063522.695 – 79752.906<0.001
Country Barbados25639.56119614.191 – 31664.930<0.001
Country Belarus28670.63023368.055 – 33973.205<0.001
Country Belgium111591.049103026.494 – 120155.604<0.001
Country Belize6984.313-2887.241 – 16855.8680.165
Country Benin-3694.976-10928.874 – 3538.9220.316
Country Bhutan15204.0849300.053 – 21108.114<0.001
Country Bolivia6269.437-769.412 – 13308.2850.081
Country BosniaandHerzegovina36752.17731477.410 – 42026.944<0.001
Country BruneiDarussalam125003.698116687.784 – 133319.611<0.001
Country Bulgaria39712.30734634.523 – 44790.091<0.001
Country BurkinaFaso-4467.078-12765.905 – 3831.7480.291
Country Burundi-6090.063-11927.671 – -252.4560.041
Country Cameroon-3855.513-10119.434 – 2408.4070.227
Country Canada81723.43074259.879 – 89186.982<0.001
Country Chad-4227.747-11424.448 – 2968.9540.249
Country Chile35280.18125332.544 – 45227.818<0.001
Country Colombia12061.5732985.644 – 21137.5010.009
Country Comoros1307.206-9298.245 – 11912.6580.809
Country CostaRica30291.52622987.974 – 37595.078<0.001
Country Croatia59160.41253686.265 – 64634.558<0.001
Country Cyprus48329.06942001.171 – 54656.968<0.001
Country Denmark105366.53799666.942 – 111066.132<0.001
Country Djibouti6240.934-547.193 – 13029.0610.071
Country DominicanRepublic27260.50421336.198 – 33184.810<0.001
Country Ecuador11963.3695081.364 – 18845.3750.001
Country ElSalvador10155.8284207.354 – 16104.3020.001
Country Estonia59056.64653542.502 – 64570.790<0.001
Country Ethiopia-12113.382-22425.862 – -1800.9020.021
Country Finland95249.03789989.372 – 100508.702<0.001
Country France92982.51284343.982 – 101621.041<0.001
Country Georgia17010.5289698.172 – 24322.885<0.001
Country Germany84992.16774080.181 – 95904.154<0.001
Country Ghana-432.662-7309.873 – 6444.5480.902
Country Greece75651.03670179.955 – 81122.116<0.001
Country Guatemala7127.486-2123.631 – 16378.6030.131
Country Guinea-2438.663-11164.637 – 6287.3120.583
Country Honduras2636.800-3964.005 – 9237.6050.433
Country Hungary55056.92749548.340 – 60565.514<0.001
Country Iceland85811.42779982.899 – 91639.954<0.001
Country Ireland153339.779147441.949 – 159237.610<0.001
Country Israel80474.24573187.541 – 87760.949<0.001
Country Italy95276.34888468.938 – 102083.759<0.001
Country Jamaica13084.7846031.233 – 20138.336<0.001
Country Japan47915.09627785.833 – 68044.360<0.001
Country Jordan34800.03626643.485 – 42956.587<0.001
Country Kazakhstan40488.28334933.592 – 46042.974<0.001
Country Kuwait87118.57179064.644 – 95172.497<0.001
Country Latvia51235.51345885.768 – 56585.258<0.001
Country Lebanon35502.17425205.511 – 45798.837<0.001
Country Lesotho-256.599-7022.146 – 6508.9480.941
Country Liberia-7614.036-17711.874 – 2483.8010.139
Country Lithuania60504.72555136.404 – 65873.046<0.001
Country Luxembourg234259.643227886.463 – 240632.823<0.001
Country Madagascar-9960.912-17914.893 – -2006.9310.014
Country Malawi-8762.485-16369.562 – -1155.4070.024
Country Malaysia43008.41536732.810 – 49284.020<0.001
Country Mali-3903.092-11032.904 – 3226.7200.283
Country Mauritania12900.8926159.624 – 19642.159<0.001
Country Mauritius35827.24826235.714 – 45418.781<0.001
Country Mexico18501.3821401.827 – 35600.9370.034
Country Mongolia14926.5915584.830 – 24268.3510.002
Country Mozambique-6726.619-12842.055 – -611.1840.031
Country Myanmar-6140.434-16789.028 – 4508.1610.258
Country Netherlands100247.24994331.716 – 106162.782<0.001
Country NewZealand70035.75264581.806 – 75489.698<0.001
Country Nicaragua965.703-8468.747 – 10400.1530.841
Country Niger-6449.584-12477.480 – -421.6880.036
Country Nigeria-8889.916-26578.390 – 8798.5570.324
Country NorthMacedonia36532.19730760.801 – 42303.593<0.001
Country Norway115220.973109764.704 – 120677.242<0.001
Country Oman48148.96541589.316 – 54708.615<0.001
Country Pakistan-19606.527-42924.280 – 3711.2270.099
Country Panama55126.40548928.981 – 61323.829<0.001
Country Paraguay14513.4147535.571 – 21491.257<0.001
Country Peru3715.834-6535.198 – 13966.8660.477
Country Philippines-1593.513-15165.932 – 11978.9060.818
Country Poland51855.84146131.650 – 57580.031<0.001
Country Portugal61371.60255950.428 – 66792.775<0.001
Country Qatar115370.890105803.077 – 124938.702<0.001
Country RussianFederation24999.5193047.750 – 46951.2870.026
Country Rwanda-5440.572-12487.044 – 1605.9010.130
Country Samoa16910.6878574.265 – 25247.110<0.001
Country SaudiArabia106514.37298404.783 – 114623.961<0.001
Country Senegal1848.066-6976.455 – 10672.5860.681
Country Serbia26346.67921329.200 – 31364.159<0.001
Country SierraLeone-4800.947-11969.068 – 2367.1730.189
Country Slovenia70163.11264833.683 – 75492.541<0.001
Country SouthAfrica31475.99324459.787 – 38492.198<0.001
Country Spain82748.56976120.941 – 89376.198<0.001
Country Sudan6166.548-1543.996 – 13877.0910.117
Country Sweden98078.35492636.571 – 103520.138<0.001
Country Switzerland111389.004102297.785 – 120480.224<0.001
Country TimorLeste-126.318-7936.917 – 7684.2800.975
Country Togo-4674.483-13514.625 – 4165.6590.299
Country Tunisia25174.20619537.983 – 30810.429<0.001
Country Turkey61291.53251303.173 – 71279.892<0.001
Country UnitedArabEmirates81522.28667938.454 – 95106.117<0.001
Country UnitedKingdom73884.43063628.256 – 84140.604<0.001
Country UnitedStates71578.30026716.567 – 116440.0330.002
Country Uruguay35179.16529111.689 – 41246.640<0.001
Country Zimbabwe-5116.328-18169.033 – 7936.3770.442
Observations577
R2 / R2 adjusted0.995 / 0.994
stargazer(ols2, fe2, type="text", title = "Regression Results for Models without Control Variables", column.labels = c("Pooled OLS", "Fixed-Effects"), dep.var.labels=c("Labour Productivity"), align=TRUE)

## 
## Regression Results for Models without Control Variables
## ========================================================================================
##                                                      Dependent variable:                
##                                       --------------------------------------------------
##                                                      Labour Productivity                
##                                             Pooled OLS              Fixed-Effects       
##                                                 (1)                      (2)            
## ----------------------------------------------------------------------------------------
## pe_share                                      42.417                    34.048          
##                                              (118.694)                 (61.178)         
##                                                                                         
## mwwhour                                       0.005**                   0.008*          
##                                               (0.002)                  (0.004)          
##                                                                                         
## healthconpri                               2,497.464***                120.235          
##                                              (741.408)                (410.073)         
##                                                                                         
## educost                                    -5,307.204***               798.586*         
##                                             (1,061.646)               (458.176)         
##                                                                                         
## factor(Country)Albania                                              24,923.510***       
##                                                                      (2,988.778)        
##                                                                                         
## factor(Country)Angola                                                9,050.157***       
##                                                                      (3,193.384)        
##                                                                                         
## factor(Country)Argentina                                            37,757.620***       
##                                                                      (4,661.141)        
##                                                                                         
## factor(Country)Australia                                            85,252.000***       
##                                                                      (4,136.672)        
##                                                                                         
## factor(Country)Austria                                              101,494.700***      
##                                                                      (2,588.868)        
##                                                                                         
## factor(Country)Bahrain                                              71,637.800***       
##                                                                      (4,129.659)        
##                                                                                         
## factor(Country)Barbados                                             25,639.560***       
##                                                                      (3,066.223)        
##                                                                                         
## factor(Country)Belarus                                              28,670.630***       
##                                                                      (2,698.403)        
##                                                                                         
## factor(Country)Belgium                                              111,591.000***      
##                                                                      (4,358.378)        
##                                                                                         
## factor(Country)Belize                                                 6,984.313         
##                                                                      (5,023.491)        
##                                                                                         
## factor(Country)Benin                                                  -3,694.976        
##                                                                      (3,681.226)        
##                                                                                         
## factor(Country)Bhutan                                               15,204.080***       
##                                                                      (3,004.475)        
##                                                                                         
## factor(Country)Bolivia                                                6,269.437*        
##                                                                      (3,581.968)        
##                                                                                         
## factor(Country)Bosnia and Herzegovina                               36,752.180***       
##                                                                      (2,684.252)        
##                                                                                         
## factor(Country)Brunei Darussalam                                    125,003.700***      
##                                                                      (4,231.848)        
##                                                                                         
## factor(Country)Bulgaria                                             39,712.310***       
##                                                                      (2,584.011)        
##                                                                                         
## factor(Country)Burkina Faso                                           -4,467.078        
##                                                                      (4,223.152)        
##                                                                                         
## factor(Country)Burundi                                               -6,090.063**       
##                                                                      (2,970.673)        
##                                                                                         
## factor(Country)Cameroon                                               -3,855.513        
##                                                                      (3,187.618)        
##                                                                                         
## factor(Country)Canada                                               81,723.430***       
##                                                                      (3,798.093)        
##                                                                                         
## factor(Country)Chad                                                   -4,227.747        
##                                                                      (3,662.297)        
##                                                                                         
## factor(Country)Chile                                                35,280.180***       
##                                                                      (5,062.208)        
##                                                                                         
## factor(Country)Colombia                                             12,061.570***       
##                                                                      (4,618.608)        
##                                                                                         
## factor(Country)Comoros                                                1,307.206         
##                                                                      (5,396.960)        
##                                                                                         
## factor(Country)Costa Rica                                           30,291.530***       
##                                                                      (3,716.671)        
##                                                                                         
## factor(Country)Croatia                                              59,160.410***       
##                                                                      (2,785.713)        
##                                                                                         
## factor(Country)Cyprus                                               48,329.070***       
##                                                                      (3,220.176)        
##                                                                                         
## factor(Country)Denmark                                              105,366.500***      
##                                                                      (2,900.441)        
##                                                                                         
## factor(Country)Djibouti                                               6,240.934*        
##                                                                      (3,454.379)        
##                                                                                         
## factor(Country)Dominican Republic                                   27,260.500***       
##                                                                      (3,014.793)        
##                                                                                         
## factor(Country)Ecuador                                              11,963.370***       
##                                                                      (3,502.153)        
##                                                                                         
## factor(Country)El Salvador                                          10,155.830***       
##                                                                      (3,027.092)        
##                                                                                         
## factor(Country)Estonia                                              59,056.650***       
##                                                                      (2,806.068)        
##                                                                                         
## factor(Country)Ethiopia                                             -12,113.380**       
##                                                                      (5,247.871)        
##                                                                                         
## factor(Country)Finland                                              95,249.040***       
##                                                                      (2,676.567)        
##                                                                                         
## factor(Country)France                                               92,982.510***       
##                                                                      (4,396.022)        
##                                                                                         
## factor(Country)Georgia                                              17,010.530***       
##                                                                      (3,721.152)        
##                                                                                         
## factor(Country)Germany                                              84,992.170***       
##                                                                      (5,552.951)        
##                                                                                         
## factor(Country)Ghana                                                   -432.662         
##                                                                      (3,499.712)        
##                                                                                         
## factor(Country)Greece                                               75,651.040***       
##                                                                      (2,784.153)        
##                                                                                         
## factor(Country)Guatemala                                              7,127.486         
##                                                                      (4,707.759)        
##                                                                                         
## factor(Country)Guinea                                                 -2,438.663        
##                                                                      (4,440.522)        
##                                                                                         
## factor(Country)Honduras                                               2,636.800         
##                                                                      (3,359.054)        
##                                                                                         
## factor(Country)Hungary                                              55,056.930***       
##                                                                      (2,803.240)        
##                                                                                         
## factor(Country)Iceland                                              85,811.430***       
##                                                                      (2,966.053)        
##                                                                                         
## factor(Country)Ireland                                              153,339.800***      
##                                                                      (3,001.320)        
##                                                                                         
## factor(Country)Israel                                               80,474.240***       
##                                                                      (3,708.098)        
##                                                                                         
## factor(Country)Italy                                                95,276.350***       
##                                                                      (3,464.192)        
##                                                                                         
## factor(Country)Jamaica                                              13,084.780***       
##                                                                      (3,589.450)        
##                                                                                         
## factor(Country)Japan                                                47,915.100***       
##                                                                      (10,243.490)       
##                                                                                         
## factor(Country)Jordan                                               34,800.040***       
##                                                                      (4,150.750)        
##                                                                                         
## factor(Country)Kazakhstan                                           40,488.280***       
##                                                                      (2,826.702)        
##                                                                                         
## factor(Country)Kuwait                                               87,118.570***       
##                                                                      (4,098.526)        
##                                                                                         
## factor(Country)Latvia                                               51,235.510***       
##                                                                      (2,722.408)        
##                                                                                         
## factor(Country)Lebanon                                              35,502.170***       
##                                                                      (5,239.822)        
##                                                                                         
## factor(Country)Lesotho                                                 -256.599         
##                                                                      (3,442.889)        
##                                                                                         
## factor(Country)Liberia                                                -7,614.036        
##                                                                      (5,138.643)        
##                                                                                         
## factor(Country)Lithuania                                            60,504.720***       
##                                                                      (2,731.861)        
##                                                                                         
## factor(Country)Luxembourg                                           234,259.600***      
##                                                                      (3,243.218)        
##                                                                                         
## factor(Country)Madagascar                                            -9,960.912**       
##                                                                      (4,047.665)        
##                                                                                         
## factor(Country)Malawi                                                -8,762.485**       
##                                                                      (3,871.131)        
##                                                                                         
## factor(Country)Malaysia                                             43,008.420***       
##                                                                      (3,193.564)        
##                                                                                         
## factor(Country)Mali                                                   -3,903.092        
##                                                                      (3,628.258)        
##                                                                                         
## factor(Country)Mauritania                                           12,900.890***       
##                                                                      (3,430.533)        
##                                                                                         
## factor(Country)Mauritius                                            35,827.250***       
##                                                                      (4,880.992)        
##                                                                                         
## factor(Country)Mexico                                                18,501.380**       
##                                                                      (8,701.715)        
##                                                                                         
## factor(Country)Mongolia                                             14,926.590***       
##                                                                      (4,753.886)        
##                                                                                         
## factor(Country)Mozambique                                            -6,726.619**       
##                                                                      (3,112.056)        
##                                                                                         
## factor(Country)Myanmar                                                -6,140.434        
##                                                                      (5,418.915)        
##                                                                                         
## factor(Country)Netherlands                                          100,247.200***      
##                                                                      (3,010.329)        
##                                                                                         
## factor(Country)New Zealand                                          70,035.750***       
##                                                                      (2,775.434)        
##                                                                                         
## factor(Country)Nicaragua                                               965.703          
##                                                                      (4,801.055)        
##                                                                                         
## factor(Country)Niger                                                 -6,449.584**       
##                                                                      (3,067.508)        
##                                                                                         
## factor(Country)Nigeria                                                -8,889.916        
##                                                                      (9,001.407)        
##                                                                                         
## factor(Country)North Macedonia                                      36,532.200***       
##                                                                      (2,936.979)        
##                                                                                         
## factor(Country)Norway                                               115,221.000***      
##                                                                      (2,776.616)        
##                                                                                         
## factor(Country)Oman                                                 48,148.960***       
##                                                                      (3,338.110)        
##                                                                                         
## factor(Country)Pakistan                                              -19,606.530*       
##                                                                      (11,866.070)       
##                                                                                         
## factor(Country)Panama                                               55,126.400***       
##                                                                      (3,153.779)        
##                                                                                         
## factor(Country)Paraguay                                             14,513.410***       
##                                                                      (3,550.923)        
##                                                                                         
## factor(Country)Peru                                                   3,715.834         
##                                                                      (5,216.601)        
##                                                                                         
## factor(Country)Philippines                                            -1,593.513        
##                                                                      (6,906.807)        
##                                                                                         
## factor(Country)Poland                                               51,855.840***       
##                                                                      (2,912.957)        
##                                                                                         
## factor(Country)Portugal                                             61,371.600***       
##                                                                      (2,758.756)        
##                                                                                         
## factor(Country)Qatar                                                115,370.900***      
##                                                                      (4,868.921)        
##                                                                                         
## factor(Country)Russian Federation                                    24,999.520**       
##                                                                      (11,170.940)       
##                                                                                         
## factor(Country)Rwanda                                                 -5,440.572        
##                                                                      (3,585.847)        
##                                                                                         
## factor(Country)Samoa                                                16,910.690***       
##                                                                      (4,242.284)        
##                                                                                         
## factor(Country)Saudi Arabia                                         106,514.400***      
##                                                                      (4,126.852)        
##                                                                                         
## factor(Country)Senegal                                                1,848.066         
##                                                                      (4,490.670)        
##                                                                                         
## factor(Country)Serbia                                               26,346.680***       
##                                                                      (2,553.322)        
##                                                                                         
## factor(Country)Sierra Leone                                           -4,800.947        
##                                                                      (3,647.752)        
##                                                                                         
## factor(Country)Slovenia                                             70,163.110***       
##                                                                      (2,712.069)        
##                                                                                         
## factor(Country)South Africa                                         31,475.990***       
##                                                                      (3,570.445)        
##                                                                                         
## factor(Country)Spain                                                82,748.570***       
##                                                                      (3,372.704)        
##                                                                                         
## factor(Country)Sudan                                                  6,166.548         
##                                                                      (3,923.783)        
##                                                                                         
## factor(Country)Sweden                                               98,078.350***       
##                                                                      (2,769.245)        
##                                                                                         
## factor(Country)Switzerland                                          111,389.000***      
##                                                                      (4,626.390)        
##                                                                                         
## factor(Country)Timor-Leste                                             -126.318         
##                                                                      (3,974.700)        
##                                                                                         
## factor(Country)Togo                                                   -4,674.483        
##                                                                      (4,498.620)        
##                                                                                         
## factor(Country)Tunisia                                              25,174.210***       
##                                                                      (2,868.192)        
##                                                                                         
## factor(Country)Turkey                                               61,291.530***       
##                                                                      (5,082.931)        
##                                                                                         
## factor(Country)United Arab Emirates                                 81,522.290***       
##                                                                      (6,912.615)        
##                                                                                         
## factor(Country)United Kingdom                                       73,884.430***       
##                                                                      (5,219.218)        
##                                                                                         
## factor(Country)United States                                        71,578.300***       
##                                                                      (22,829.480)       
##                                                                                         
## factor(Country)Uruguay                                              35,179.170***       
##                                                                      (3,087.650)        
##                                                                                         
## factor(Country)Zimbabwe                                               -5,116.328        
##                                                                      (6,642.332)        
##                                                                                         
## Constant                                   58,105.630***              5,363.991*        
##                                             (4,664.996)              (3,170.817)        
##                                                                                         
## ----------------------------------------------------------------------------------------
## Observations                                    577                      577            
## R2                                             0.072                    0.995           
## Adjusted R2                                    0.065                    0.994           
## Residual Std. Error                    42,763.310 (df = 572)     3,466.238 (df = 465)   
## F Statistic                           11.076*** (df = 4; 572) 840.889*** (df = 111; 465)
## ========================================================================================
## Note:                                                        *p<0.1; **p<0.05; ***p<0.01

<Pooled OLS, Fixed-Effects, and Random-Effects>

pooledols2 <- plm(lp_gdp_lagged ~ pe_share + mwwhour + healthconpri + educost, data=data_filtered, model = "pooling", index = c("Country", "Year"))
fixeff2 <- plm(lp_gdp_lagged ~ pe_share + mwwhour + healthconpri + educost, data=data_filtered, model = "within", index = c("Country", "Year"))
randeff2 <- plm(lp_gdp_lagged ~ pe_share + mwwhour + healthconpri + educost, data=data_filtered, model = "random", index = c("Country", "Year"))

stargazer(pooledols2, fixeff2, randeff2, type="text", title = "Regression Results for Models with Control Variables", column.labels = c("Pooled OLS", "Fixed-Effects", "Random-Effects") ,dep.var.labels=c("Labour Productivity"), align=TRUE)

## 
## Regression Results for Models with Control Variables
## ========================================================================
##                                  Dependent variable:                    
##              -----------------------------------------------------------
##                                  Labour Productivity                    
##                    Pooled OLS           Fixed-Effects     Random-Effects
##                        (1)                   (2)               (3)      
## ------------------------------------------------------------------------
## pe_share             42.417                 34.048            19.193    
##                     (118.694)              (61.178)          (59.086)   
##                                                                         
## mwwhour              0.005**                0.008*           0.007**    
##                      (0.002)               (0.004)           (0.003)    
##                                                                         
## healthconpri      2,497.464***             120.235           294.378    
##                     (741.408)             (410.073)         (398.051)   
##                                                                         
## educost           -5,307.204***            798.586*          610.373    
##                    (1,061.646)            (458.176)         (449.341)   
##                                                                         
## Constant          58,105.630***                           45,259.910*** 
##                    (4,664.996)                             (4,797.314)  
##                                                                         
## ------------------------------------------------------------------------
## Observations           577                   577               577      
## R2                    0.072                 0.018             0.005     
## Adjusted R2           0.065                 -0.217            -0.002    
## F Statistic  11.076*** (df = 4; 572) 2.090* (df = 4; 465)     8.155*    
## ========================================================================
## Note:                                        *p<0.1; **p<0.05; ***p<0.01

Above all, after including control variables, the most notable problem detected is that the coefficient for the independent variable of interest “pe_share” changes drastically for all three models of Pooled OLS, Fixed-Effects, and Random-Effects. Also none of the above models show any statistically significant sign of correlations between the independent variable of main interest and dependent variable, while mean weekly working hours (mwwhour), consumer price for health services (healthconpri), and cost for educational services (educost) are statistically significant at 95% and 99% confidence level for Pooled OLS, and mean weekly working hours (mwwhour) is statistically significant at 90% and 95% confidence level, respectively, for Fixed-Effects model and Random-Effects model. Consistently low R-square value and adjusted R-square value across the regression models as well as F-statistic value also lead us to confirm that there is no statistically significant correlation that we can observed to prove the hypothesis in these models.

6.Robustness Check

Bera, Sosa-Escudero and Yoon locally robust test helps us test residual serial correlation against AR(1) residuals in a pooled OLS model. It is useful in that it helps us detect “the right direction of the departure from the null” (Croissant and Millo, 2018). The result below presents the p-value being much lower than 0,05, which leads us to adopt the alternative hypothesis that errors have either serial correlation or random effect.

pbsytest(pooledols1)

## 
##  Bera, Sosa-Escudero and Yoon locally robust test - unbalanced panel
## 
## data:  formula
## chisq = 23.233, df = 1, p-value = 1.435e-06
## alternative hypothesis: AR(1) errors sub random effects

pbsytest(pooledols2)

## 
##  Bera, Sosa-Escudero and Yoon locally robust test - unbalanced panel
## 
## data:  formula
## chisq = 28.556, df = 1, p-value = 9.103e-08
## alternative hypothesis: AR(1) errors sub random effects

On the other hand, Croissant and Millo (2018) points out that the “locally corrected” tests are relatively inferior in terms of statistical properties compared to the tests that are not corrected if the latter tests are correctly specified.If there Their argument is that a better test in the case when there is no serial correlation could be the likelihood-based Lagrange Multiplier Test refined by Honda. Therefore we run LM Test to supplement the above locally robust test and to identify the autocorrelation in the residuals, and the result shows that the p-values for both Pooled OLS models are much less than 0.05, which allows us to adopt the alternative hypothesis that there are significant individual/time effects.

plmtest(pooledols1)

## 
##  Lagrange Multiplier Test - (Honda) for unbalanced panels
## 
## data:  lp_gdp_lagged ~ pe_share
## normal = 38.844, p-value < 2.2e-16
## alternative hypothesis: significant effects

plmtest(pooledols2)

## 
##  Lagrange Multiplier Test - (Honda) for unbalanced panels
## 
## data:  lp_gdp_lagged ~ pe_share + mwwhour + healthconpri + educost
## normal = 37.44, p-value < 2.2e-16
## alternative hypothesis: significant effects

Therefore, the results from the two tests allow us to conclude that the Pooled OLS models are not relevant to be applied for this data.

Lastly, to determine whether the Fixed-Effects model or the Random-Effects model is proper for this data, we run the Hausman test. The null hypothesis for this test is that the preferred model is random effects. The results for both models below show the p-values being higher than 0.05, which leads us to stick to the null hypothesis. However, as we observed in the previous section, either the Fixed-Effects model or the Random-Effects model does not present any statistical significance, meaning that even if the Hausman test leads us to choose the Random-Effects model, it does not give us much implications.

phtest(fixeff1,randeff1)

## 
##  Hausman Test
## 
## data:  lp_gdp_lagged ~ pe_share
## chisq = 2.5871, df = 1, p-value = 0.1077
## alternative hypothesis: one model is inconsistent

phtest(fixeff2,randeff2)

## 
##  Hausman Test
## 
## data:  lp_gdp_lagged ~ pe_share + mwwhour + healthconpri + educost
## chisq = 5.1683, df = 4, p-value = 0.2705
## alternative hypothesis: one model is inconsistent

7.Conclusion

Based on the regression models and tests we have conducted, it seems that the data we used does not allow us to either accept or reject the hypothesis that ‘the increased level of private sector engagement in the delivery of secondary education services increases overall labour productivity.’ While it may require further analysis based on better sets of data, what we could learn or assume at least from this statistical test is that: i) the impact of the secondary level of education may not be directly related to the level of labour productivity of employees but rather the privatization of higher education or vocational training might give us better insights, ii) we might be able to obtain some meaningful results if we test with the data set for the privatization of education that distinguishes the private ownership of education services, such as private firms, NGOs, or religious groups, and iii) more detailed analysis of the time taken for the educational attainment to have statistically significant impact on individual’s labour productivity, or simply lag structures, would help researchers who study the relationship between education and labour at various levels aggregate or utilize relevant data more effectively.

8.Reference

Croissant and Millo (2018). Panel Data Econometrics with R, ISBN-13:978-1-118-94918-4.

Draxler, A. (2013). International PPPs in Education: New Potential or Privatizing Public Goods’ in S. Robertson, K. Mundy, A. Verger and F. Menashy (eds.) Public Private Partnerships in Education: New Actors and Modes of Governance in a Globalizing World (Cheltenham: Edward Elgar).

Fennell, S. (2012). Why girls’ education rather than gender equality? The strange political economy of PPPs in Pakistan. In: Robertson S, Mundy K (Eds) Public-private partnerships in education: new actors and modes of governance in a globalizing world. Cheltenham: Edward Elgar Publishing.

Steiner-Khamsi, G. & Draxler, A., eds. (2018). The state, business, and education: Public-private partnerships revisited. Cheltenham, UK: E. Elgar. Open-access book.

Associate Professor of International Relations and Political Science

International institutions and political networks.