GENEVA
GRADUATE

INSTITUTE

INSTITUT DE HAUTES
ETUDES INTERNATIONALES
ET DU DEVELOPPEMENT

GRADUATE INSTITUTE
OF INTERNATIONAL AND
DEVELOPMENT STUDIES

ERGM

Introduction to Social Networks

James Hollway






Bay area network of actors and water management
Insttutions




(Juestions?

Why some mstitutions EENUER ,f
more popular - _—
than others?

S e
o Mk SR
= 9 ) . i -‘- :
ﬁ'{ﬁ‘, R . R

! o e W et
nT e SN R, A

. B N gl ) ‘.'"m 5

Do actors overlap

AV WY prmmms =
” / f !

\
J . ‘*"\ || / ':,":_,,‘f

A QIR NN Why does the network
/o Vo have this structure?

-—-

1 their mmstitutional choices?



Answers?

Design (Koremenos et al 2001) Homophily (McPherson etal 2001)

Popularity (Merton 1969)
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Could itbe a bit of all of these?
Maybe some more than others?

Design (K()remen()s etal 2001 ) \ Homophily (McPherson etal 2001)

Transitivity (Simmel 1902)

Structural holes (Burt 1994)

Propinquity (Festinger etal 1950)  *./ \ A HA T R Random (Erdés and Rényi 1960)







Strategy...

- 1. Getoutall your ingredients (Effects)
- 2. Use special oven (ERGM)

- 3. Testlook and taste (Diagnostics)



Ingredients Oven Taste Test
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Explore various Understand model Recognise when a model
effects available Intuition and estimation converges and fits
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Effects
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ow & Why Ties Form?

- Randomness - Structural (Network self-organization)

- Covariates (nodal attributes)

- Monadic

- Dyadic effects

- Exogenous contexts

- Sender

- Recelver

- Matching
- Similarity

Spatial factors

Other networks

Activity
Popularity
Reciprocity
Transitavity
Three-Cycles
Four-Cycles
Brokerage

Robins & Lusher 2012: 23



Levels of Dependence

- Independence

 Logistic rearession If we believe that particular attributes
-~ Density, attributes arc responsible for ties,
then include counts of

6 o

Sender Recetver Degree




Levels of Dependence

- Independence

 Logistic rearession If we believe that reciprocity or homophily
- Density, attributes are responsible for ties,
then include counts of

P

Reciprocity Homophily Dyadic

- Dyad-independence

- pl
- Reciprocity, homophily

Holland & Leinhardt 1981, Fienberg & Wasserman 1979, 1981



Levels of Dependence

- Independence

 Logiviic rearession If we believe that popularity or transitivity
- Density, attributes are responsible for ties,

 Dyad-independence then include counts of

- pl
- Reciprocity, homophily

- Markov-dependence : :
- pYERGM / / \ / \
- Transiuvity, popularity Q Q Q Q_Q

may depend on k-Stars Triangles
one step removed...



Levels of Dependence

Independence

 Logistic regression If we believe that ties are coordinated
* Density, attributes or that clustering aggregates,

| then include counts of
Dyad-independence

- pl
- Reciprocity, homophily

Markov-dependence - Q
- p/ERGM / \
- Transiavity, popularity

Social circuit dependence

- New specifications

Four Cycles GWESP

Snijders et al 2006, Hunter & Handcock 2006

- Geometrically weighted edgewise shared partners
(GWESP), four-cycles



Dependence assumption
and corresponding model

Dependence graph D

Cliques of D

Xin  Xik
Independence O O
X AL X Vi,7,h k
(] hk v, 7, 1, EN X%J ® ® th ®
Bernoulli random graph models O O
Xne  Xjk
Xin Xhi
OO
Dyadic Dependence Xﬂf Cif““ o
Xij L Xnp, VA{i,5} = {h,k} Xij X
| Xkh Xjh - -
Dyadic dependence models X X,
o—0O
Xni Xk
th th
Markov Dependence
Xij W Xk if {6,530 {h,k} #0
Xij Xhk
Markov graphs
Xik Xjk
Partial conditional dependence Xin  Xik
E.g., social circuit dependence
Xij W Xpp iof Xip = Xjp=1o0r X, X
Xik = Xjp =1
Exponential random graph models Xne Xjk




Network Statistics
property Undirected Directed
, e—@ O—0O
Density
Edges Arcs
. . —0
Reciprocity
Mutual dyads
@ /‘
Degree <‘ Q<0
distribution ® \.
Stars Out-stars In-stars
Connectivity f\. ‘4 O
Two-paths Two-paths
Closure A ‘4—}‘ ‘44-‘
Triangles Transitive triads 3-cycles
Clustering A
of triangles . . .
Alternating-k- Alternating- Alternating-
triangles transitive-triangles 3-cycles

Clustering
of 2-paths

>

Alternating-k-
paths

f @
Alternating-k-

twopaths

Amati, Lomi, and Mira. 2018. “Social Network Modeling.”
Annual Review of Statistics and Its Application 5 (1): 343—-69.




Relevant statistics 1n the water management case

Basic Configurations for Network Activity Basic Configurations for Network Closure

CO— O

Actor participating in (tied to) institution Actor of a particular type with ties to institutions
O . Actors of a particular type involved in 4-cycles with
Institution of a particular type with ties to actors the same institutions (of any type)

Basic Configurations for Network Centralization

Lo O

Actor closure via alternating 2-paths: Institutions of a particular type in 4-cycles with
\O Actors participating in multiple events together ¢ the same actors (of any type)
Institution centralization via alternating stars: Actor of a particular type involved in a two-star e at
Institutions connected to multiple actors O Actor RN

Actor centralization via alternating stars: ' Institutions of a particular type involved in a two-star
Actors connected 1o multiple institutions

QO
o N0

Spatial centralization via alternating stars: Actors from same region connected to same institution



Notes on ingredients

Start with most basic effects (e.g. density)

Add eflects from increasing levels of dependence
(e.g. Markov, social circuit)

Always include more fundamental forms from
within more complex configurations (e.g. monadic
before homophily, degree before closure)

Often useful to contrast structural-only models
with with covariates-added models
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real value = (88,28)
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Nota bene..

- We'll cover alot of ground here

- Some vocabulary may be unfamiliar

- Don’tworry if you don’t understand everything

- Focus on getting the big picture

- statnet putsalotof this behind the curtain, so you often don’t have to deal with it
(except the details matter when the modelling breaks down)

- S0: don’t be afraid to ask questions! (today, tutorial, office hours, Moodle, consultancies)



What are ERGMs?

- ERGMs (pronounced érgums - this 1s
important)

- “are statstical models for network
structure, permitting inferences about how

network ties are patterned” (Robins &
LLusher 2012)

- Since the random graphs in our model form an
exponential family, we call the model an
exponential (family) random graph model
(ERGM... EFRGM would be 700 much of a

tongue-twister!)
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- Aim to explain observed network ties or structure - Once you have a model of how much of each
as function of “ingredients” you putin to it “ingredient” to put in, we can use this model to:
- these ingredients can be exogenous (monadic - predict ties (e.g. how likely is it that Paul and
and dyadic covariates), or Ringo have a tie?)
- endogenous (structural effects, like activity/ - simulate networks (e.g. how would the cake

popularity or transitivity) look if | added more butter?)
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- Social networks are locally emergent; structured, yet stochastic

- Local configurations homogenous and those that appear more often than by
chance and over attribute explanations evince endogenous mechanisms and

multiple processes can operate simultaneously
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The Secret Sauce

- Probability of network x 1s given by

- asum of network statistics (z)

- expresses counts of network configurations (e.g. counts
of reciprocal, transitive, or homophilic subgraphs)

- thatis weighted (0) P (X

- expresses the importance of each configuration

- Inside an exponential (e)

- this 1s an exponential-fami/y random graph model, so
that probabilities [0,1]

- and 1s normalised (x)

- over all possible graphs of the same size (x” in X)






Problem: Oh x!

- Ideally use maximum likelihood estimation, (0 | x), directly, to find estimates of 6 that
make 2 most likely

- Butremember x? R = Z CXP (Z kak(m/)>
k

r’'eX

- Directed, binary network of 72 nodes has 271 states

- Really, really large, making x not computable except for very small graphs

- How large?...



How large?

For this undirected, 34-node
graph, computing c¢(8) directly
requires summation of

7,547,924,849,643,082,704,483,
109,161,976,537,781,833,842,
440,832,880,856,752,412,600,
B m g | 491,248,324,784,297,704,172,
253,450,355,317,535,082,936,
750,061,527,689,799,541,169,
259,849,585,265,122,868,502,
865,392,087,298,790,653,952

terms. PENNSTATE




Ox, how do we get x?

- Markov Chain Monte Carlo (MCMC)

- Different variations available (Gibbs, Metropolis-Hastings)

- Main idea: Stmulate a discrete-time Markov chain whose stationary distribution is the
distribution we want to sample from



Markov Chain Monte Carlo (MCMC()

Density MCMC lteration
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- relers to the part that relies on the generation of random numbers

- note that the distribution on the left resembles the distribution
we are drawing from and that the proposal distribution does not
move



Markov Chain Monte Carlo (MCMC()

Density MCMC lteration
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- relers to the part that relies on the generation of random numbers

- note that the distribution on the left resembles the distribution
we are drawing from and that the proposal distribution does not
move



Markov Chain Monte Carlo (MCMC)

Density MCMC lIteration
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- 1s a sequence of numbers in which each number 1s dependent
(only) on the previous number

- traceplot seems to wander like in a random walk



Markov Chain Monte Carlo (MCMC)

Density MCMC lteration
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- 1s a sequence of numbers in which each number 1s dependent
(only) on the previous number

- traceplot seems to wander like in a random walk



IN ORDER TO SAVE TIME,
THE REMAINDER OF THIS
MARRIAGE PROPOSAL WILL
BE GENERATED USING
MARKOV CHAINGS.




An underlying Markov chain

- The ERGM is also the stationary distribution of a Markov random walk with transition
probabilities

! | exXp ( Zk ¢91<Zk(XiWj ))
N(N —1) exp( D Qka(X)) T GXP( 2k szk(xiw’j))

p(x — x": 0) =

- Intheory, it we just let this random walk run long enough, it will approximate the stationary
distribution and thus the ERGM for a given parameter 0

- Inpracuce, this problem is again intractable



Sampling from the Markov chain to estimate

However, we can use the Markov chain to simulate networks x(), x(2), ..., x(M) that are a good sample of the space of all
networks

Just need to make sure that these simulated networks have a low autocorrelation and are representative of the sample
space

N—"
N—"

Calculate the sample equivalentof £ ) (Z (X

~ Checkwhether 29 — 2(Zops) = 0

A\

- Ifyes,0 =0
- If no,update@
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Convergence

- The ERGM tries to produce a combination
(vector) of parameter estimates that together
generate simulated networks that don’t
differ (much) from the observed network on
the salient statistics

- When it has settled on estimates (any
updates are very small and tend to oscillate
around a particular point estimate) we can
say that the model has converged

So far, the empirical approach to Zeno’s Paradox
has been inconclusive.



3 Main Issues

|

]

Location
0 1 2 3 4 5 6
|

/

I | I I | |
0 200 400 600 800 1000

|

Index

- 1. Dependence on starting values
- Problem: Some starting values (e.g. 0) may be biased

- Solution: Increase burnin period to discard first samples from

© = N W B O O N 00 © -
[ R R R B | [ R R B

MCMC lteration

1 Burn-in

(011 ,0)

Markov chain to give it time to stabilise or restart with new values




3 Main Issues

A
m—m C - 2. Autocorrelation due to Markov chain
| | “IMHUMWHHJ“ - Problem: Some normal, but should drop
A down and waver around 0 quite quickly or
o is considered excessive (not mixing well)
AL - Solution: Increase t4inning or change
1001 — 2000 0 5 10 La:o 30 mo del
E F
5 j MCMC lteration
e N Thinning Interval = 3
= “HUJIumu“u“m“m*m :: ’
G H 0 z: 1 ' : . 2.8 31 y 3.7
' . g _.'.'Ll_JfYE-:f':‘::fy:;:23:::'2222752}52 (1):

Iterations Lag



2 Main Issues
- 3. Amajor problem with ERGMs is that some
ingredients shouldn’t be scaled linearly:

- Having a friend in common obviously makes
our friendship more likely

- But should each additional friend contribute
the same? Three friends = thrice as likely?
Four friends = ...fource as likely? Same “info”

in each?
Q - It scaled linearly, then simulated networks
/ \ would end up degenerare: impossibly dense,

sparse, €Lc.




- Maybe better to discount additional friends?

- Alternating k-stars and triangles effectively alternate the contributions
ol successive ties positively and negatively

GWESP - Geometrically-weighted degrees and edgewise-shared partners
WTE? discounts additional contributions by &

- Basically the same:

- a =0, then GWESP statistic = number of edges in at least one triangle
- a-> o, then GWESP statistic -> 3x number of triangles

/<>\ - soas a-> 0, subsequent ties/partners discounted more

- 'The lower a, model less likely to be degenerate, so start by fixing o low,
say (.25 or so (possible to estimate together with the coefficient, but

SlOOOOOW) Snijders et al 2006, Hunter 2007



A results table

Naive Actor Model Political Capacity Model

General Parameters

Density -3.88 (0.03)* -3.75(0.07)*
Centralization (actors) — —
Centralization (institutions)
Closure (actors) — —
Geographic Centralization - -
Actor Type Activity Parameters ( Local Government is Excluded Category )

Federal Government — 0.45 (0.15)*
State Government — 0.19 (0.14)
Water Special District — 0.13 (0.09)
Environmental Special District — 0.29 (0.17)
Environmental Group - -0.18 (0.10)
Industry Group - -0.59 (0.26)*
Education/Consulting — -0.40 (0.18)*
Actor Coalition - -0.03 (0.34)
Other Activity — 0.07 (0.48)
Institution Type Activity Parameters ( Collaborative Partnership is Excluded Category )
Interest Group Association Activity - -0.22 (0.10)*
Advisory Committee Activity - -0.16 (0.12)
Regulatory Process Activity - -0.78 (0.16)*
Actor as Venue Activity = -0.70 (0.19)*
Joint Powers Authority Activity - 0.16 (0.16)
Mahalanobis distance as an indicator of 46,208 15,541
model fit (smaller values indicate greater

fit)

Strategic Decision

Model

-7.01 (0.35)*

0.61 (0.11)*
.36 (0.18)*
-0.19(0.05)*

0.43 (0.16)*
0.16 (0.13)
0.12 (0.09)
0.26 (0.17)
-0.16 (0.09)

-0.50 (0.23)*

-0.32 (0.17)
-0.03 (0.33)
0.11 (0.43)

-0.09 (0.09)
-0.10 (0.11)
-0.61(0.15)*

-0.47 (0.16)*

0.15 (0.15)
4,173

Strategic Geography

Model

-5.77(0.36)*
-0.21(0.11)
0.56(0.18)*
-0.06(0.04)
1.57(0.05)*

1.82(0.18)*
1.35(0.16)

0.42(0.10)*
0.46(0.19)*
-0.01(0.10)
0.05(0.29)
-0.06(0.19)
0.44(0.38)
1.33(0.54)%

\J
®
\)

-0.04(0.006)
-0.03(0.06)
-0.36(0.12)*
-0.26(0.13)*
0.06(0.10)
638

Note: Cell entries are ERGM parameter estimates with standard errors in parentheses. All models are estimated with “exogenous hubs,” with fixed

degree distributions for nodes with more than 20 edges. *Reject null hypothesis of parameter = 0, p < 0.05.

Much like a logit

- Coellicients represent
change in (log-odds)
likelihood of a tie for a unit
change in predictor

Predictors are network-level
statistics that represent
Markovian processes, so we can
think about their changes locally

Practical script goes into this in
more detail, but we see here that
there 1s geographic
centralisation, and that this
effect flips actor centralisation
and mutes institutional
centraliation and actor closure

Lubell, Robins, and Wang 2014



Interpretation

- Parameters of social network models (ERGM, SAOM) notoriously difficult to interpret because:
- No uni-dimensional dependent variable
- No single “error term” (endogeneity)
- Nonlinearity of the model (cf. logistic regression)
- Substantive effects sometimes/often represented by multiple effects (model terms) in the model
- Fundamentally N=1 models — model-based inference

- Between-network comparisons face difficulties related to: different numbers of nodes, different
average degrees, for the SAOM, different time lengths between waves



ERGM

Diagnostics
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But is the converged model a good one?

Goodness-of-fit (GOF) evaluates whether the simulated networks are similar to the observed one...

In terms of staustics that are oz explicitly modelled

- degree distribution
- triad census

- geodesic distances
Why does it have to be ot/er statistics?

GOJFs can be considered equivalent to an A2 statistic in regression models, though y2 and /tests are not

available



proportion of nodes

Goodness-ol-fit diagnostics

Thick line observed statistics

Box plots show distribution of
statistic for simulated networks

Median

25th Percentile

95%
IOR




Goodness-ol-fit diagnostics

Overestimating Overestimating

low degrees high degrees
I - Thick line observed statistics

0.4

Box plots show distribution of

- statistic for simulated networks

0.3
I

0.2

proportion of nodes

0.1

0.0

Underestimating
medium degrees



proportion of nodes

Goodness-ol-fit diagnostics

Overestimating Overestimating

low degrees high degrees

proportion of triads

(0]
|
|
[}
[}
< —/ :
S — ee———— a2y
| | | |

Underestimating
medium degrees






Summary: What ERGMs do

exXp ( D 1 Okzy (X))

K

P(x;0) =

Explains the probability of observing a specific network formation/tie in a network

Dependence between observations taken into account through statistic functions z
that represent local patterns

- Density

- Reciprocity
- Homophily
- Transitvity

- Similar institutional portfolios, ...



Why ERGMs?

- ERGMs increasingly understood (sociology, political science, economics)
- ERGMs increasingly used (sociology, political science, economics)

- ERGMs increasingly useful (directed, bipartite, multilevel, valued,
longitudinal, actor attributes, missing data, snowball designs)



T'he real weapon...?




ERGM

Effects Model Diagnostics
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Explore various Understand model Recognise when a model
effects available Intuition and estimation converges and fits
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