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Bay area network of actors and water management 
institutions



Questions?

Do actors overlap  
in their institutional choices?

Why does the network  
have this structure?

Why some institutions  
more popular  
than others?



Answers?

Popularity (Merton 1968)

Transitivity (Simmel 1902)

Structural holes (Burt 1994)

Homophily (McPherson et al 2001)

Propinquity (Festinger et al 1950)

Design (Koremenos et al 2001)

Random (Erdős and Rényi 1960)



Could it be a bit of all of these? 
Maybe some more than others?

Popularity (Merton 1968)

Transitivity (Simmel 1902)

Structural holes (Burt 1994)

Homophily (McPherson et al 2001)

Propinquity (Festinger et al 1950)

Design (Koremenos et al 2001)

Random (Erdős and Rényi 1960)





Strategy…

- 1. Get out all your ingredients (Effects) 

- 2. Use special oven (ERGM) 

- 3. Test look and taste (Diagnostics)
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Levels of Dependence
- Independence  

- Logistic regression 

- Density, attributes 

- Dyad-independence  

- p1 

- Reciprocity, homophily 

- Markov-dependence  

- p*/ERGM 

- Transitivity, popularity 

- Social circuit dependence  

- New specifications 

- Geometrically weighted edgewise 
shared partners, four-cycles

If we believe that ties are coordinated 
or clustering aggregates,  
then include counts of
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Understand model 
intuition and estimation

Explore various  
effects available

Recognise when a model  
converges and fits

mailto:james.hollway@graduateinstitute.ch?subject=
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Levels of Dependence
- Independence  

- Logistic regression 

- Density, attributes 

- Dyad-independence  

- p1 

- Reciprocity, homophily 

- Markov-dependence  

- p*/ERGM 

- Transitivity, popularity 

- Social circuit dependence  

- New specifications 

- Geometrically weighted edgewise 
shared partners, four-cycles

If we believe that ties are coordinated 
or clustering aggregates,  
then include counts of

real value = (88,28)
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How & Why Ties Form?
- Randomness 

- Covariates (nodal attributes) 

- Monadic 
- Sender 
- Receiver 

- Dyadic effects 
- Matching 
- Similarity 

- Exogenous contexts 

- Spatial factors 

- Other networks  

- Structural (Network self-organization) 

- Activity 

- Popularity 

- Reciprocity 

- Transitivity 

- Three-Cycles 

- Four-Cycles 

- Brokerage 

-
Robins & Lusher 2012: 23



Levels of Dependence
If we believe that particular attributes 

are responsible for ties,  
then include counts of

Sender Receiver Degree

- Independence  

- Logistic regression 

- Density, attributes 

- Dyad-independence  
- p1 (Holland & Leinhardt 1981; Fienberg & 

Wasserman 1979; 1981)  
- Reciprocity, homophily 

- Markov-dependence  
- p*/ERGM 
- Transitivity, popularity 

- Social circuit dependence  
- New specifications (Snijders et al 2006; Hunter & 

Handcock 2006) 
- Geometrically weighted edgewise shared partners 

(GWESP), four-cycles



Levels of Dependence

Holland & Leinhardt 1981, Fienberg & Wasserman 1979, 1981

If we believe that reciprocity or homophily 
are responsible for ties,  
then include counts of

Reciprocity Homophily Dyadic

- Independence  
- Logistic regression 

- Density, attributes 

- Dyad-independence  
- p1  

- Reciprocity, homophily 

- Markov-dependence  
- p*/ERGM 
- Transitivity, popularity 

- Social circuit dependence  
- New specifications (Snijders et al 2006; Hunter & 

Handcock 2006) 
- Geometrically weighted edgewise shared partners 

(GWESP), four-cycles



- Independence  
- Logistic regression 

- Density, attributes 

- Dyad-independence  
- p1 

- Reciprocity, homophily 

- Markov-dependence  
- p*/ERGM 

- Transitivity, popularity 

- Social circuit dependence  
- New specifications (Snijders et al 2006; Hunter & 

Handcock 2006) 
- Geometrically weighted edgewise shared partners 

(GWESP), four-cycles

Levels of Dependence
If we believe that popularity or transitivity 

are responsible for ties,  
then include counts of

k-Stars Trianglesmay depend on 
one step removed…



Levels of Dependence

Snijders et al 2006, Hunter & Handcock 2006

If we believe that ties are coordinated 
or that clustering aggregates,  
then include counts of

Four Cycles GWESP

- Independence  

- Logistic regression 

- Density, attributes 

- Dyad-independence  

- p1 

- Reciprocity, homophily 

- Markov-dependence  

- p*/ERGM 

- Transitivity, popularity 

- Social circuit dependence  

- New specifications 

- Geometrically weighted edgewise shared partners 
(GWESP), four-cycles



Table 1 Dependence assumptions along with the corresponding dependence graphs

D and the cliques of D.

Dependence assumption Dependence graph D Cliques of D

and corresponding model

Independence
Xij ‹‹ Xhk, ’ i, j, h, k œ N

Bernoulli random graph models

Xij

Xih Xik

Xjh

Xhk Xjk

Dyadic Dependence
Xij ”‹‹ Xhk, ’ {i, j} = {h, k}

Dyadic dependence models

Xij

Xji

XhiXih

Xik

Xki

Xjh

XhjXhk

Xkh

XjkXkj

Markov Dependence
Xij ”‹‹ Xhk if {i, j} fl {h, k} ”= ÿ

Markov graphs

Xij

Xih Xjh

Xhk

Xik Xjk

Partial conditional dependence
E.g., social circuit dependence
Xij ”‹‹ Xhk if Xih = Xjk = 1 or

Xij ”‹‹ Xhk if Xik = Xjh = 1

Exponential random graph models

Xij

Xih Xik

Xjh

Xhk Xjk

Cliques in the corresponding dependence graphs (Table 1) are single vertexes and single
edges, corresponding to the single tie variables Xij and the couples of tie variables of type
{Xij , Xji}. Therefore, the probability distribution of dyadic dependence models takes the
form

P (x; ◊, fl) = 1
Ÿ(◊, fl) exp

A
ÿ

ij

◊ijxij +
ÿ

ij

flijxijxji

B
, (3)

Under assumptions of homogeneity across isomorphic configurations, the su�cient statistics
of the models are the number of ties and the number of reciprocal dyads, that is pair of
nodes (i, j) in which both the ties xij and xji are present.

The best known dyadic dependence model is the p1 model (Holland & Leinhardt 1981)
obtained by equating only the parameters related to reciprocal dyads. The parameters

6 Amati et al.



Amati, Lomi, and Mira. 2018. “Social Network Modeling.”  
Annual Review of Statistics and Its Application 5 (1): 343–69.

Table 2 Network properties and corresponding network statistics

Network Statistics
property Undirected Directed

Density
Edges Arcs

Reciprocity
Mutual dyads

Degree
distribution

Stars Out-stars In-stars

Connectivity
Two-paths Two-paths

Closure
Triangles Transitive triads 3-cycles

Clustering
of triangles

Alternating-k-
triangles

Alternating-
transitive-triangles

Alternating-
3-cycles

Clustering
of 2-paths

Alternating-k-
paths

Alternating-k-
twopaths

model. For instance, the greater the value of the parameter for the triangles, the greater
the probability of a tie leading to higher number of triangles, everything else being equal
in the network.

However, this interpretation has – at best – only a heuristic value as ERGMs does
not reduce (except in some trivial cases) to a logistic regression due to the dependencies
between ties. Furthermore, the statistics are highly correlated since network configurations
are defined as combinations of ties and some of the configurations are nested in others
(e.g., a k-star contains

!
k

h

"
h-stars). Therefore, the meaning of the statement “everything

else being equal” is somehow unclear for the interpretation of ERGMs parameters . The
correlation among the statistics is also an issue for the estimation of some specifications of
the ERGMs as described in Section 6.2.

www.annualreviews.org • Social Network Modelling 9



Relevant statistics in the water management case



Notes on ingredients
- Start with most basic effects (e.g. density) 

- Add effects from increasing levels of dependence 
(e.g. Markov, social circuit) 

- Always include more fundamental forms from 
within more complex configurations (e.g. monadic 
before homophily, degree before closure) 

- Often useful to contrast structural-only models 
with with covariates-added models
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Nota bene..
- We’ll cover a lot of ground here  

- Some vocabulary may be unfamiliar 

- Don’t worry if you don’t understand everything 

- Focus on getting the big picture 

- statnet puts a lot of this behind the curtain, so you often don’t have to deal with it 
(except the details matter when the modelling breaks down) 

- So: don’t be afraid to ask questions! (today, tutorial, office hours, Moodle, consultancies)



What are ERGMs?
- ERGMs (pronounced örgums - this is 

important)  

- “are statistical models for network 
structure, permitting inferences about how 
network ties are patterned” (Robins & 
Lusher 2012) 

- Since the random graphs in our model form an 
exponential family, we call the model an 
exponential (family) random graph model 
(ERGM… EFRGM would be too much of a 
tongue-twister!) 



Aim

- Aim to explain observed network ties or structure 
as function of “ingredients” you put in to it 

- these ingredients can be exogenous (monadic 
and dyadic covariates), or 

- endogenous (structural effects, like activity/
popularity or transitivity) 

- Once you have a model of how much of each 
“ingredient” to put in, we can use this model to: 

- predict ties (e.g. how likely is it that Paul and 
Ringo have a tie?) 

- simulate networks (e.g. how would the cake 
look if I added more butter?)
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The homogeneity assumption 

= 
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A log-linear model (ERGM) for ties 

)()()()()Pr(log 2211 θψθθθ ++++== xzxzxzxX pp

”Aggregated” to a joint model for entire adjacency matrix 

Interaction terms in log-linear model of types 

ijX ikij XX jkikij XXX

A log-linear model (ERGM) for ties 

By definition of (in-) dependence 

)Pr()Pr(),Pr( ikikijijikikijij xXxXxXxX ==≠==

E.g.   and   co-occuring  
i

j 

i

j k 

i

k 

Main effects    interaction term  
ijX ikX ikij XX

More than is explained 
by margins 

Part 7  

Summary of fitting routine 

The steps of fitting an ERGM 

•  fit base-line model 
•  check convergence 
•  rerun if model not converged 
•  include more parameters? GOF 
•  candidate models 

Part 6  

Bipartite data 
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E.g.   and   co-occuring  
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Main effects    interaction term  
ijX ikX ikij XX

More than is explained 
by margins 

Part 7  

Summary of fitting routine 

The steps of fitting an ERGM 

•  fit base-line model 
•  check convergence 
•  rerun if model not converged 
•  include more parameters? GOF 
•  candidate models 

Part 6  

Bipartite data 

- Social networks are locally emergent; structured, yet stochastic 

- Local configurations homogenous and those that appear more often than by 
chance and over attribute explanations evince endogenous mechanisms and 
multiple processes can operate simultaneously



P (X = x|✓) =
exp(

P
k ✓̂kzk(x))





The Secret Sauce
- Probability of network x is given by  

- a sum of network statistics (z) 
- expresses counts of network configurations (e.g. counts 

of reciprocal, transitive, or homophilic subgraphs) 

- that is weighted (θ) 
- expresses the importance of each configuration 

- inside an exponential (e) 

- this is an exponential-family random graph model, so 
that probabilities [0,1] 

- and is normalised (𝜅) 

- over all possible graphs of the same size (x’ in X)

P (X = x|✓) =
exp(

P
k ✓̂kzk(x))







Problem: Oh 𝜅!
- Ideally use maximum likelihood estimation, L(θ|x), directly, to find estimates of θ that 

make x most likely 

- But remember 𝜅? 

- Directed, binary network of n nodes has 2n(n-1) states 

- Really, really large, making 𝜅 not computable except for very small graphs 

- How large?…

 =
X

x02X

exp

 
X

k

✓kzk(x
0)

!



How large?
Statistical Models for Networks

Difficulties of fitting the ERGM

Favored Approach: Approximate MLE via MCMC

Why MLE is difficult

Change Statistics and Maximum Pseudolikelihood

How burdensome?
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terms.

March 17, 2006 ERGMs for network data



O𝜅, how do we get 𝜅?

- Markov Chain Monte Carlo (MCMC) 

- Different variations available (Gibbs, Metropolis-Hastings)  

- Main idea: Simulate a discrete-time Markov chain whose stationary distribution is the 
distribution we want to sample from



Markov Chain Monte Carlo (MCMC)

- refers to the part that relies on the generation of random numbers 

- note that the distribution on the left resembles the distribution 
we are drawing from and that the proposal distribution does not 
move
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Markov Chain Monte Carlo (MCMC)

- is a sequence of numbers in which each number is dependent 
(only) on the previous number 

- traceplot seems to wander like in a random walk
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- traceplot seems to wander like in a random walk





An underlying Markov chain
- The ERGM is also the stationary distribution of a Markov random walk with transition 

probabilities 

- In theory, if we just let this random walk run long enough, it will approximate the stationary 
distribution and thus the ERGM for a given parameter θ 

- In practice, this problem is again intractable



Sampling from the Markov chain to estimate
- However, we can use the Markov chain to simulate networks x(1), x(2), …, x(M) that are a good sample of the space of all 

networks 

- Just need to make sure that these simulated networks have a low autocorrelation and are representative of the sample 
space 

- Calculate the sample equivalent of  

- Check whether  

- If yes,  

- If no, update  

θ = ̂θ
̂θ

E✓̂(z(X))

z̄✓ =
1

M

⇣
z(x(1)) + z(x(2)) + . . .+ z(x(M))

⌘

z̄✓ � z(xobs) = 0
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Convergence
- The ERGM tries to produce a combination 

(vector) of parameter estimates that together 
generate simulated networks that don’t 
differ (much) from the observed network on 
the salient statistics 

- When it has settled on estimates (any 
updates are very small and tend to oscillate 
around a particular point estimate) we can 
say that the model has converged



3 Main Issues

- 1. Dependence on starting values 

- Problem: Some starting values (e.g. 0) may be biased 

- Solution: Increase burnin period to discard first samples from 
Markov chain to give it time to stabilise or restart with new values



3 Main Issues
- 2. Autocorrelation due to Markov chain 

- Problem: Some normal, but should drop 
down and waver around 0 quite quickly or 
is considered excessive (not mixing well) 

- Solution: Increase thinning or change 
model



- 3. A major problem with ERGMs is that some 
ingredients shouldn’t be scaled linearly: 

- Having a friend in common obviously makes 
our friendship more likely 

- But should each additional friend contribute 
the same? Three friends = thrice as likely? 
Four friends = …fource as likely? Same “info” 
in each? 

- If scaled linearly, then simulated networks 
would end up degenerate: impossibly dense, 
sparse, etc.

3 Main Issues



GWESP 
WTF?

- Maybe better to discount additional friends? 

- Alternating k-stars and triangles effectively alternate the contributions 
of successive ties positively and negatively 

- Geometrically-weighted degrees and edgewise-shared partners 
discounts additional contributions by 𝛼 

- Basically the same:  

- 𝛼 = 0, then GWESP statistic = number of edges in at least one triangle 

- 𝛼 -> ∞, then GWESP statistic -> 3x number of triangles 

- so as 𝛼 -> 0, subsequent ties/partners discounted more 

- The lower 𝛼, model less likely to be degenerate, so start by fixing 𝛼 low, 
say 0.25 or so (possible to estimate together with the coefficient, but 
slooooow) Snijders et al 2006, Hunter 2007



A results table
- Much like a logit 

- Coefficients represent 
change in (log-odds) 
likelihood of a tie for a unit 
change in predictor 

- Predictors are network-level 
statistics that represent 
Markovian processes, so we can 
think about their changes locally 

- Practical script goes into this in 
more detail, but we see here that 
there is geographic 
centralisation, and that this 
effect flips actor centralisation 
and mutes institutional 
centraliation and actor closure

Lubell, Robins, and Wang 2014



Interpretation
- Parameters of social network models (ERGM, SAOM) notoriously difficult to interpret because: 

- No uni-dimensional dependent variable 

- No single ‘error term’ (endogeneity) 

- Nonlinearity of the model (cf. logistic regression) 

- Substantive effects sometimes/often represented by multiple effects (model terms) in the model  

- Fundamentally N=1 models — model-based inference 

- Between-network comparisons face difficulties related to: different numbers of nodes, different 
average degrees, for the SAOM, different time lengths between waves
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or clustering aggregates,  

real value = (88,28)
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In Silico





But is the converged model a good one?
- Goodness-of-fit (GOF) evaluates whether the simulated networks are similar to the observed one… 

- In terms of statistics that are not explicitly modelled 

- degree distribution 

- triad census 

- geodesic distances 

- Why does it have to be other statistics? 

- GOFs can be considered equivalent to an R2 statistic in regression models, though 𝜒2 and F tests are not 
available



Goodness-of-fit diagnostics
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Box plots show distribution of  
statistic for simulated networks

Median

95%

IQR

25th Percentile

Thick line observed statistics
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statistic for simulated networks
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Overestimating 
low degrees

Underestimating 
medium degrees

Overestimating 
high degrees

Now you try!





Summary: What ERGMs do

- Explains the probability of observing a specific network formation/tie in a network 

- Dependence between observations taken into account through statistic functions z 
that represent local patterns 

- Density 

- Reciprocity 

- Homophily 

- Transitivity 

- Similar institutional portfolios, …



Why ERGMs?

- ERGMs increasingly understood (sociology, political science, economics)  

- ERGMs increasingly used (sociology, political science, economics) 

- ERGMs increasingly useful (directed, bipartite, multilevel, valued, 
longitudinal, actor attributes, missing data, snowball designs)



The real weapon…?
thanks! 



ERGM
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Levels of Dependence
- Independence  

- Logistic regression 

- Density, attributes 

- Dyad-independence  

- p1 

- Reciprocity, homophily 

- Markov-dependence  

- p*/ERGM 

- Transitivity, popularity 

- Social circuit dependence  

- New specifications 

- Geometrically weighted edgewise 
shared partners, four-cycles

If we believe that ties are coordinated 
or clustering aggregates,  
then include counts of
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Understand model 
intuition and estimation

Explore various  
effects available

Recognise when a model  
converges and fits

mailto:james.hollway@graduateinstitute.ch?subject=


Dig in!


