GENEVA GRADUATE INSTITUTE

INSTITUT DE HAUTES ÉTUDES INTERNATIONALES ET DU DÉVELOPPEMENT GRADUATE INSTITUTE OF INTERNATIONAL AND

DEVELOPMENT STUDIES

Testing

Introduction to Social Networks

James Hollway

Shelling's simple model of segregation

- Thomas Schelling worked on multiple topics, including strategic interactions (game-theory)
 - Won Nobel Prize in 2005 and died in 2016 (aged 95!)
- One of his best books is called "Micromotives and Macrobehaviour" and treats the unintended consequences of individual action - you should read it!
- Here we will discuss one particular example from that book and link it to social networks

Schelling 1978, 2006

- Each checker occupies a node on a lattice network, such that they have 3 (in the corners) up to 8 (in the middle) neighbours
- Fach checker can be coloured red or buck grow are encorpred rough, d'aributed as random with caud probability
- Most checkers are located near a mix of checkers of their own and the other color, with the result instable are more among others (0.43)

Although checkers hold no prejudice *against* living around checkers of the other colour, micro-motives nonetheless result in segregation, an unintended macroconsequence that none of the actors desired

50 steps in

Lesson #1

Macro outcomes are a result of micro motives

Coleman's boat

Blau Index $1 - \sum p_i^2$

- An index of variety or diversity of an attribute within a network or groups
- Based on the probability that two entities taken at random are the same (different)
- With or without 1-, known as the:
 - (Gini-)Simpson Index (statistics)
 - Probability of Interspecific Encounter (ecology)
 - Hunter-Gaston Index (microbiology)
 - Herfindahl(-Hirschman) Index (economics)
 - Gibbs-Martin Index (sociology)

Blau Index $1 - \sum p_i^2$

- An index of variety or diversity of an attribute within a network or groups
- Based on the probability that two entities taken at random are the same (different)
- With or without 1-, known as the:
 - (Gini-)Simpson Index (statistics)
 - Probability of Interspecific Encounter (ecology)
 - Hunter-Gaston Index (microbiology)
 - Herfindahl(-Hirschman) Index (economics)
 - Gibbs-Martin Index (sociology)
- Distributional, but no structure

Homophily vs Heterophily

- Homophily means actors tie to those who are the same on some socially salient attribute more often than by chance
 - Status homophily: similar characteristics
 - Ascribed: ethnicity, age, gender?
 - Acquired: religion, education, occupation
 - Value homophily: similar preferences
 - e.g. political, sexual, musical preferences

- Heterophily is when actors prefer those who are different on such attributes

Lazarsfeld and Merton 1954, Block and Grund 2014... see also Plato [1968], Aristotle [1934]

Shared homophily

- English: "Birds of a feather flock together"
- French: "Those who resemble each other assemble with each other" (Qui se ressemble s'assemble)
- Italian: "God makes them then couples them" (Dio li fa e poi li accoppia)
- Japanese: "Racoon dogs from the same den" (Onazi ana no mujina)

PS: I'm collecting such translations, so if there are more that you are aware of in other languages, please let me know!

"One cannot marry an eskimo, if no eskimo is around."

-Peter Blau

"One cannot marry an eskimo, if no eskimo is around."

-Peter Blau

Cognition: Choice vs Induced

- Choice homophily: people associate disproportionately with similar others because human beings prefer (for rational or irrational reasons) similar others
 - I.e. if choice homophily, then if people enter a room with similar and dissimilar strangers, they will seek those who are similar and avoid those who are dissimilar
- Induced homophily: people form social ties with the people they encounter, and those whom they encounter are those that are similar (not because of any particular psychological preference)
 - I.e. if induced homophily, then if people enter a room with only similar strangers, then they will make relationships with similar people even if they do not have a particular preference McPherson & Smith-Lovin 1987

Baseline vs Inbreeding

- The qualifier "more often than by chance" is crucial, because chance alone may explain the emergence of a great deal of similarity, especially when structured
- Baseline homophily created by the demography of the potential tie pool; level of homophily expected from random mixing in the population
- Inbreeding homophily explicitly over and above the opportunity set; level of homophily in excess of that baseline

McPherson, Smith-Lovin, and Cook 2001

E-I Index

- Krackhardt and Stern's (1988) E-I index is a simple descriptive of homogeneity in a network

$$EI(x) = \frac{E-I}{E+I}$$

- Measures the difference between the number of external (E, between-group) and internal (I, within-group) ties, normalised by the total number of ties
- Can be on the network, group, or individual level
- What is the range?
- What is the expected value without choice homophily?

E-I example

$$\frac{1}{2+6} = -0$$

Lesson #2

Isolating mechanisms such as choice/inbreeding homophily is difficult

E-I Index of the classroom network

- Gender
 - External ties: 19
 - Internal ties: 92
 - $EI_{gender}(x) = -0.66$
- Ethnicity
 - External ties: 71
 - Internal ties: 40
 - $EI_{ethnicity}(x) = 0.28$
- What do we learn from these numbers?

But this is just a score... Is this more or less than we should expect?

Option 1: obtain a baseline from random graphs

Null Hypothesis I: Random Graphs

- 1. Calculate E-I index of network x
- 2. Generate 1k random networks with same density and distribution of attributes as x
- **3**. Calculate E-I index of random networks with given attribute
- 4. Identify where E-I index of observed network lies in the distribution of networks
- 5. If E-I index unlikely to be observed randomly, suggests some homophily/heterophily

So is there homophily?

- Both E-I indices significantly differ from the expected value of a random base line network (with fixed density)
 - Significant gender homophily
 - Significantly less ethnicity-based heterophily
- Can you think of metrics for doing the same with reciprocity, transitivity, centralisation?
- Would you expect these to be statistically significant or not? Why?

Problems with this test

- Is a random network a good baseline?
 - It fixes density/dimensions, but loses all structure...

Consequences of ignoring network dependencies

- Yes, we *can* correlate networks (explain one "dependent" network as a function of other "independent" networks): regression/correlation coefficients are estimated correctly as association between networks
 - But... standard errors not reliable, as they rely on the assumption of *independence of observations* which is not a justifiable assumption here
- Let's take a look at another example to illustrate what we mean
- We need a different (non-parametric) method of assessing whether the correlations are "significant"

Case study: organisational emails

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
1	0	0	0	0	0	1	1	0	0	0	0	1	2	0	0	0	0	0	0	0	0	0
2	0	0	3	1	1	4	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	2
3	0	1	0	4	1	0	2	0	0	0	0	0	2	1	1	0	7	2	6	0	0	1
4	0	1	1	0	0	5	0	0	0	1	0	1	3	0	0	0	3	0	0	0	0	1
5	0	0	0	0	0	1	0	2	0	0	0	0	3	0	2	0	0	0	0	0	0	0
6	0	2	0	2	2	0	0	2	1	0	0	0	1	0	5	0	0	1	0	0	0	0
7	1	0	1	0	0	0	0	1	0	0	0	0	0	0	8	0	0	0	1	0	0	0
8	0	0	0	0	2	1	1	0	2	0	0	0	4	0	6	0	0	6	0	0	0	0
9	1	0	0	0	1	2	0	3	0	0	2	7	6	0	1	1	0	30	0	0	0	1
10	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	2
11	0	0	0	0	0	1	0	0	1	0	0	1	4	0	3	0	1	2	0	0	0	6
12	0	0	0	0	0	1	0	0	5	0	1	0	6	0	3	0	0	0	0	0	0	0
13	0	0	2	0	1	0	0	1	5	0	0	6	0	1	0	0	5	0	0	0	0	3
14	2	0	0	1	0	0	0	0	0	0	0	0	4	0	6	0	1	0	3	0	0	0
15	0	3	1	0	3	6	1	5	1	0	5	3	7	8	0	0	1	0	1	0	0	3
16	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	2
17	0	0	1	3	0	0	0	0	0	1	2	0	6	0	0	0	0	0	5	0	0	0
18	0	0	2	0	0	3	0	9	34	0	3	0	0	0	0	0	0	0	0	0	0	8
19	1	0	7	1	0	1	0	0	0	0	0	0	2	1	0	0	15	0	0	0	1	2
20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
21	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
22	0	2	1	2	0	0	0	0	0	3	7	0	5	0	1	1	0	5	1	0	0	0

Zooming in...

	9	10	11	12	13	14	15	16	17	18
9	0	0	2	7	6	0	1	1	0	30
10	0	0	0	0	1	0	0	0	1	0
11	1	0	0	1	4	0	3	0	1	2
12	5	0	1	0	6	0	3	0	0	0
13	5	0	0	6	0	1	0	0	5	0
14	0	0	0	0	4	0	6	0	1	0
15	1	0	5	3	7	8	0	0	1	0
16	2	0	0	0	0	0	0	0	0	0
17	0	1	2	0	6	0	0	0	0	0
18	34	0	3	0	0	0	0	0	0	0

Row dependencies

	9	10	11	12	13	14	15	16	17	18
9	0	0	2	7	6	0	1	1	0	30
10	0	0	0	0	1	0	0	0	1	0
11	1	0	0	1	4	0	3	0	1	2
12	5	0	1	0	6	0	3	0	0	0
13	5	0	0	6	0	1	0	0	5	0
14	0	0	0	0	4	0	6	0	1	0
15	1	0	5	3	7	8	0	0	1	0
16	2	0	0	0	0	0	0	0	0	0
17	0	1	2	0	6	0	0	0	0	0
18	34	0	3	0	0	0	0	0	0	0

Column dependencies

	9	10	11	12	13	14	15	16	17	18
9	0	0	2	7	6	0	1	1	0	30
10	0	0	0	0	1	0	0	0	1	0
11	1	0	0	1	4	0	3	0	1	2
12	5	0	1	0	6	0	3	0	0	0
13	5	0	0	6	0	1	0	0	5	0
14	0	0	0	0	4	0	6	0	1	0
15	1	0	5	3	7	8	0	0	1	0
16	2	0	0	0	0	0	0	0	0	0
17	0	1	2	0	6	0	0	0	0	0
18	34	0	3	0	0	0	0	0	0	0

Reciprocal dependencies...

	9	10	11	12	13	14	15	16	17	18
9	0	0	2	7	6	0	1	1	0	30
10	0	0	0	0	1	0	0	0	1	0
11	1	0	0	1	4	0	3	0	1	2
12	5	0	1	0	6	0	3	0	0	0
13	5	0	0	6	0	1	0	0	5	0
14	0	0	0	0	4	0	6	0	1	0
15	1	0	5	3	7	8	0	0	1	0
16	2	0	0	0	0	0	0	0	0	0
17	0	1	2	0	6	0	0	0	0	0
18	34	0	3	0	0	0	0	0	0	0

Some hypotheses (monadic and dyadic)

- Longer acquaintances exchange more emails (dyadic)
- Same department exchange more emails (dyadic)
- Same sex individuals exchange more emails (dyadic)
- More senior individuals send more emails (monadic)
- More senior individuals receive more emails (monadic)

Null Hypothesis II: Permutations

- Permuting a network means changing the network in a way that keeps the structure of a network intact, but changes the positions of nodes in the network
 - Usually done by repeatedly swapping the rows and columns of an adjacency matrix
- Repeated permutations creates distributions of structurally similar networks that might otherwise be confounded with homophily, giving us a more realistic null hypothesis

5, 3, 1, 2, 4

5, 3, 1, 2, 4

5, 3, 1, 2, 4

So is there homophily?

- Both E-I indices significantly differ from the expected value from permutations of the network
 - Significant gender homophily
 - Significantly less ethnicity-based heterophily
- Note that the distributions are broader than those using a random baseline
- How would this work with reciprocity, transitivity, centralisation? Why?

Larger networks

- For network of 5 nodes, number of permutations is tractable (5! = 120)
- However, in many cases we want to analyse larger networks
 - For a network of 10, 32, and 100 nodes there are 3.6e6, 2.6e35, and 9.3e157 possible permutations
 - For these cases, random draws of permutations are used to create the distribution
- Principle of *sampling* used repeatedly in the statistical analysis of social networks

Possible confounds

- What are some possible confounds for homophily? (i.e. other explanations for homogeneous macro outcomes that are not about choice homophily?)
 - propinquity (geography)
 - kinship (family)
 - foci (organisational)
 - isomorphic roles (occupational, family, informal)
 - robustness (weak tie dissolution under crisis)

What should we do differently?

$$M_y = \beta_0 M_1 + \beta_1 M_{x1} + \beta_2 M_{x2} + \ldots + Z$$

		_				
1			0	1	1	0
			0	0	0	0
			0	1	1	0
	Ч		0	0	0	0

Available effects for network_regression

- ...: explains the network's ties (values) by (values of) another network
- ego(...): explains the network's ties (values) by an attribute associated with the tie sender
 - alter(...): explains the network's ties (values) by an attribute associated with the tie recipient
 - same (...): explains the network's ties (values) by the dyadic matching of attributes
 - dist(...): explains the network's ties (values) by an attribute associated with the tie sender
 - **Sim(...)**: explains the network's ties (values) by the proportional similarity between
 - tertius(...): explains the network's ties (values) by (sum/mean of) attributes associated other nodes sending to tie recipient

Haunss and Hollway 2023

Sometimes endogenous mechanisms in operation too though...

- In networks though, an observation of a tie may depend on other observations of a tie, e.g.:
 - One tie may depend on a tie in the other direction (reciprocity)
 - One tie may depend on other ties to that alter (popularity)
 - One tie may depend on ties to a third node (transitivity)
- This introduces *endogeneities*
 - Traditional statistics might find a nuisance and advise finding a way to exclude
 - But network statistics finds a crucial part of the story
- MRQAP helps us take into account these dependencies, but sometimes they are the mechanism of interest...
 - To explore them in more detail we might need models such as ERGMs and SAOMs...