GENEVA
GRADUATE
INSTITUTE

Testing

Introduction to Social Networks

The school class of week 1

Why do we see the clustering, communities, and topology we see?

Shelling's simple model of segregation

- Thomas Schelling worked on multiple topics, including strategic interactions (game-theory)
- Won Nobel Prize in 2005 and died in 2016 (aged 95!)
- One of his best books is called "Micromotives and Macrobehaviour" and treats the unintended consequences of individual action - you should read it!
- Here we will discuss one particular example from that book and link it to social networks

A chessboard model of residential segregation

- Each checker occupies a node on a lattice network, such that they have 3 (in the corners) up to 8 (in the middle) neighbours
- Each checker can be coloured red or blue (grey are unoccupied nodes), distributed at random with equal probability
- Most checkers are located near a mix of checkers of their own and the other color, with the result that they are more among others (0.43)

A chessboard model of residential segregation

1 step in

- Let's say both red and blue checkers fairly happy with heterogeneity, just don't want to be only checker their colour around...
- So happy to have 0.5 heterogeneity in their local environment (i.e. $3 / 4$ other)
- Simulation identifies a checker dissatisfied in local environment and offers them to move to next available space that satisfies their preference
- E.g. here red checker on node 19 moves to the vacant node 8 , moving it from having 5 blue $/ 1$ red neighbours, to having 2 red / 1 blue neighbours...
...what happens?

A chessboard model of residential segregation

1 step in
0.35

50 steps in

A chessboard model of residential segregation

50 steps in

Lesson \# 1

Macro outcomes are a result of micro motives

Coleman's boat

Macro level \begin{tabular}{c}
(Protestant)

religious

doctrine

 Micro level \quad

(Capitalist)

economic

system
\end{tabular}

Fig. 2.-Macro-micro-macro relations: methodological individualism

Blau Index
 $$
1-\sum p_{i}^{2}
$$

- An index of variety or diversity of an attribute within a network or groups
- Based on the probability that two entities taken at random are the same (different)
- With or without 1-, known as the:
- (Gini-)Simpson Index (statistics)
- Probability of Interspecific Encounter (ecology)
- Hunter-Gaston Index (microbiology)
- Herfindahl(-Hirschman) Index (economics)
- Gibbs-Martin Index (sociology)

Blau Index
 $$
1-\sum p_{i}^{2}
$$

- An index of variety or diversity of an attribute within a network or groups
- Based on the probability that two entities taken at random are the same (different)
- With or without 1-, known as the:
- (Gini-)Simpson Index (statistics)
- Probability of Interspecific Encounter (ecology)
- Hunter-Gaston Index (microbiology)
- Herfindahl(-Hirschman) Index (economics)
- Gibbs-Martin Index (sociology)
- Distributional, but no structure

Homophily vs Heterophily

- Homophily means actors tie to those who are the same on some socially salient attribute more often than by chance
- Status homophily: similar characteristics
- Ascribed: ethnicity, age, gender?
- Acquired: religion, education, occupation
- Value homophily: similar preferences
- e.g. political, sexual, musical preferences
- Heterophily is when actors prefer those who are different on such attributes

Lazarsfeld and Merton 1954, Block and Grund 2014..
see also Plato [1968], Aristotle [1934]

Shared homophily

- English: "Birds of a feather flock together"
- French: "Those who resemble each other assemble with each other" (Qui se ressemble s'assemble)
- Italian: "God makes them then couples them" (Dio lifa e poi li accoppia)
- Japanese: "Racoon dogs from the same den" (Onazi ana no mujina)

"One cannot marry an eskimo, if no eskimo is around."

-Peter Blau

"One cannot marry an eskimo, if no eskimo is around."
-Peter Blau

Cognition: Choice vs Induced

- Choice homophily: people associate disproportionately with similar others because human beings prefer (for rational or irrational reasons) similar others
- I.e. if choice homophily, then if people enter a room with similar and dissimilar strangers, they will seek those who are similar and avoid those who are dissimilar
- Induced homophily: people form social ties with the people they encounter, and those whom they encounter are those that are similar (not because of any particular psychological preference)
- I.e. if induced homophily, then if people enter a room with only similar strangers, then they will make relationships with similar people even if they do not have a particular preference

Baseline vs Inbreeding

- The qualifier "more often than by chance" is crucial, because chance alone may explain the emergence of a great deal of similarity, especially when structured
- Baseline homophily created by the demography of the potential tie pool; level of homophily expected from random mixing in the population
- Inbreeding homophily explicitly over and above the opportunity set; level of homophily in excess of that baseline

E-I Index

- Krackhardt and Stern's (1988) E-I index is a simple descriptive of homogeneity in a network

$$
E I(x)=\frac{E-I}{E+I}
$$

- Measures the difference between the number of external (E, between-group) and internal (I, within-group) ties, normalised by the total number of ties
- Can be on the network, group, or individual level
- What is the range?
- What is the expected value without choice homophily?

E-I example

Lesson \#2

Isolating mechanisms such as choice/inbreeding homophily is difficult

Nodes colored by gender (red $=$ female $)$

Nodes colored by country of origin of the father

E-I Index of the classroom network

- Gender
- External ties: 19
- Internal ties: 92
- $E I_{\text {gender }}(x)=-0.66$
- Ethnicity

- External ties: 71
- Internal ties: 40
- $E I_{\text {ethnicity }}(\mathrm{x})=0.28$
- What do we learn from these numbers?

But this is just a score...
 Is this more or less than we should expect?

Option 1: obtain a baseline from random graphs

Null Hypothesis I: Random Graphs

1. Calculate E-I index of network x
2. Generate 1 k random networks with same density and distribution of attributes as x
3. Calculate E-I index of random networks with given attribute
4. Identify where E-I index of observed network lies in the distribution of networks
5. If E-I index unlikely to be observed randomly, suggests some homophily/heterophily

So is there homophily?

- Both E-I indices significantly differ from the expected value of a random base line network (with fixed density)
- Significant gender homophily
- Significantly less ethnicity-based heterophily

- Can you think of metrics for doing the same with reciprocity, transitivity, centralisation?
- Would you expect these to be statistically significant or not? Why?

Problems with this test

- Is a random network a good baseline?
- It fixes density/dimensions, but loses all structure...

Consequences of ignoring network dependencies

- Yes, we can correlate networks (explain one "dependent" network as a function of other "independent" networks): regression/correlation coefficients are estimated correctly as association between networks
- But... standard errors not reliable, as they rely on the assumption of independence of observations - which is not a justifiable assumption here
- Let's take a look at another example to illustrate what we mean
- We need a different (non-parametric) method of assessing whether the correlations are "significant"

Case study: organisational emails

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$	$\mathbf{2 1}$	$\mathbf{2 2}$
$\mathbf{1}$	0	0	0	0	0	1	1	0	0	0	0	1	2	0	0	0	0	0	0	0	0	0
$\mathbf{2}$	0	0	3	1	1	4	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	2
$\mathbf{3}$	0	1	0	4	1	0	2	0	0	0	0	0	2	1	1	0	7	2	6	0	0	1
$\mathbf{4}$	0	1	1	0	0	5	0	0	0	1	0	1	3	0	0	0	3	0	0	0	0	1
$\mathbf{5}$	0	0	0	0	0	1	0	2	0	0	0	0	3	0	2	0	0	0	0	0	0	0
$\mathbf{6}$	0	2	0	2	2	0	0	2	1	0	0	0	1	0	5	0	0	1	0	0	0	0
$\mathbf{7}$	1	0	1	0	0	0	0	1	0	0	0	0	0	0	8	0	0	0	1	0	0	0
$\mathbf{8}$	0	0	0	0	2	1	1	0	2	0	0	0	4	0	6	0	0	6	0	0	0	0
$\mathbf{9}$	1	0	0	0	1	2	0	3	0	0	2	7	6	0	1	1	0	30	0	0	0	1
$\mathbf{1 0}$	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	2
$\mathbf{1 1}$	0	0	0	0	0	1	0	0	1	0	0	1	4	0	3	0	1	2	0	0	0	6
$\mathbf{1 2}$	0	0	0	0	0	1	0	0	5	0	1	0	6	0	3	0	0	0	0	0	0	0
$\mathbf{1 3}$	0	0	2	0	1	0	0	1	5	0	0	6	0	1	0	0	5	0	0	0	0	3
$\mathbf{1 4}$	2	0	0	1	0	0	0	0	0	0	0	0	4	0	6	0	1	0	3	0	0	0
$\mathbf{1 5}$	0	3	1	0	3	6	1	5	1	0	5	3	7	8	0	0	1	0	1	0	0	3
$\mathbf{1 6}$	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	2
$\mathbf{1 7}$	0	0	1	3	0	0	0	0	0	1	2	0	6	0	0	0	0	0	5	0	0	0
$\mathbf{1 8}$	0	0	2	0	0	3	0	9	34	0	3	0	0	0	0	0	0	0	0	0	0	8
$\mathbf{1 9}$	1	0	7	1	0	1	0	0	0	0	0	0	2	1	0	0	15	0	0	0	1	2
$\mathbf{2 0}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\mathbf{2 1}$	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
$\mathbf{2 2}$	0	2	1	2	0	0	0	0	0	3	7	0	5	0	1	1	0	5	1	0	0	0

Zooming in...

	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$
$\mathbf{9}$	0	0	2	7	6	0	1	1	0	30
$\mathbf{1 0}$	0	0	0	0	1	0	0	0	1	0
$\mathbf{1 1}$	1	0	0	1	4	0	3	0	1	2
$\mathbf{1 2}$	5	0	1	0	6	0	3	0	0	0
$\mathbf{1 3}$	5	0	0	6	0	1	0	0	5	0
$\mathbf{1 4}$	0	0	0	0	4	0	6	0	1	0
$\mathbf{1 5}$	1	0	5	3	7	8	0	0	1	0
$\mathbf{1 6}$	2	0	0	0	0	0	0	0	0	0
$\mathbf{1 7}$	0	1	2	0	6	0	0	0	0	0
$\mathbf{1 8}$	34	0	3	0	0	0	0	0	0	0

Row dependencies

	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$
$\mathbf{9}$	0	0	2	7	6	0	1	1	0	30
$\mathbf{1 0}$	0	0	0	0	1	0	0	0	1	0
$\mathbf{1 1}$	1	0	0	1	4	0	3	0	1	2
$\mathbf{1 2}$	5	0	1	0	6	0	3	0	0	0
$\mathbf{1 3}$	5	0	0	6	0	1	0	0	5	0
$\mathbf{1 4}$	0	0	0	0	4	0	6	0	1	0
$\mathbf{1 5}$	1	0	5	3	7	8	0	0	1	0
$\mathbf{1 6}$	2	0	0	0	0	0	0	0	0	0
$\mathbf{1 7}$	0	1	2	0	6	0	0	0	0	0
$\mathbf{1 8}$	34	0	3	0	0	0	0	0	0	0

Column dependencies

	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$
$\mathbf{9}$	0	0	2	7	6	0	1	1	0	30
$\mathbf{1 0}$	0	0	0	0	1	0	0	0	1	0
$\mathbf{1 1}$	1	0	0	1	4	0	3	0	1	2
$\mathbf{1 2}$	5	0	1	0	6	0	3	0	0	0
$\mathbf{1 3}$	5	0	0	6	0	1	0	0	5	0
$\mathbf{1 4}$	0	0	0	0	4	0	6	0	1	0
$\mathbf{1 5}$	1	0	5	3	7	8	0	0	1	0
$\mathbf{1 6}$	2	0	0	0	0	0	0	0	0	0
$\mathbf{1 7}$	0	1	2	0	6	0	0	0	0	0
$\mathbf{1 8}$	34	0	3	0	0	0	0	0	0	0

Reciprocal dependencies...

	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$
$\mathbf{9}$	0	0	2	7	6	0	1	1	0	30
$\mathbf{1 0}$	0	0	0	0	1	0	0	0	1	0
$\mathbf{1 1}$	1	0	0	1	4	0	3	0	1	2
$\mathbf{1 2}$	5	0	1	0	6	0	3	0	0	0
$\mathbf{1 3}$	5	0	0	6	0	1	0	0	5	0
$\mathbf{1 4}$	0	0	0	0	4	0	6	0	1	0
$\mathbf{1 5}$	1	0	5	3	7	8	0	0	1	0
$\mathbf{1 6}$	2	0	0	0	0	0	0	0	0	0
$\mathbf{1 7}$	0	1	2	0	6	0	0	0	0	0
$\mathbf{1 8}$	34	0	3	0	0	0	0	0	0	0

Some hypotheses (monadic and dyadic)

- Longer acquaintances exchange more emails (dyadic)
- Same department exchange more emails (dyadic)
- Same sex individuals exchange more emails (dyadic)
- More senior individuals send more emails (monadic)
- More senior individuals receive more emails (monadic)

Null Hypothesis II: Permutations

- Permuting a network means changing the network in a way that keeps the structure of a network intact, but changes the positions of nodes in the network
- Usually done by repeatedly swapping the rows and columns of an adjacency matrix
- Repeated permutations creates distributions of structurally similar networks that might otherwise be confounded with homophily, giving us a more realistic null hypothesis

0	5	3	0	0
8	0	0	0	0
0	0	0	0	0
0	0	6	0	6
0	0	4	2	0

$5,3,1,2,4$

| 0 | 0 | 4 | 2 | 0 |
| :--- |
| 0 | 5 | 3 | 0 | 0 |
| 8 | 0 | 0 | 0 | 0 |\(\rightarrow\left[\begin{array}{llllllllllll}0 \& 0 \& 0 \& 4 \& 2

0 \& 0 \& 5 \& 3 \& 0

0 \& 0 \& 0 \& 0 \& 0 \& 8 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

0 \& 4 \& 0 \& 0 \& 0 \& 0 \& 0 \& 3 \& 0 \& 0 \& 0 \& 0

0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

0 \& 0 \& 6 \& 0 \& 6 \& 6 \& 0 \& 0 \& 6 \& 0 \& 6 \& 0

0 \& 0 \& 6 \& 0 \& 0 \& 0 \& 0 \& 8 \& 0 \& 0

0 \& 0 \& 0 \& 0\end{array}\right.\)

So is there homophily?

- Both E-I indices significantly differ from the expected value from permutations of the network
- Significant gender homophily
- Significantly less ethnicity-based heterophily
- Note that the distributions are broader than those using a random baseline
- How would this work with reciprocity, transitivity, centralisation? Why?

Taroer networkss

- For network of 5 nodes, number of permutations is tractable (5! = 120)
- However, in many cases we want to analyse larger networks
- For a network of 10,32 , and 100 nodes there are 3.6 e 6 , 2.6 e 35 , and 9.3 e 157 possible permutations
- For these cases, random draws of permutations are used to create the distribution
- Principle of sampling used repeatedly in the statistical
 analysis of social networks

Possible confounds

- What are some possible confounds for homophily? (i.e. other explanations for homogeneous macro outcomes that are not about choice homophily?)
- propinquity (geography)
- kinship (family)
- foci (organisational)
- isomorphic roles (occupational, family, informal)
- robustness (weak tie dissolution under crisis)

What should we do differently?

$$
M_{y}=\beta_{0} M_{1}+\beta_{1} M_{x 1}+\beta_{2} M_{x 2}+\ldots+Z
$$

Available effects for network_regression

- ...: explains the network's ties (values) by (values of) another network
- ego (...): explains the network's ties (values) by an attribute associated with the tie sender
- alter (...) : explains the network's ties (values) by an attribute associated with the tie recipient
- same (...): explains the network's ties (values) by the dyadic matching of attributes
- dist (...): explains the network's ties (values) by an attribute associated with the tie sender
- $\operatorname{sim}(. .$.$)) : explains the network's ties (values) by the proportional similarity between$
- tertius (...) : explains the network's ties (values) by (sum/mean of) attributes associated other nodes sending to tie recipient

Sometimes endogenous mechanisms in operation too though...

- In networks though, an observation of a tie may depend on other observations of a tie, e.g.:
- One tie may depend on a tie in the other direction (reciprocity)
- One tie may depend on other ties to that alter (popularity)
- One tie may depend on ties to a third node (transitivity)
- This introduces endogeneities
- Traditional statistics might find a nuisance and advise finding a way to exclude
- But network statistics finds a crucial part of the story
- MRQAP helps us take into account these dependencies, but sometimes they are the mechanism of interest...
- To explore them in more detail we might need models such as ERGMs and SAOMs...

