GENEVA
GRADUATE
INSTITUTE

Topology

Introduction to Social Networks

James Hollway

Topology

Scale-Free

Small-World

Core-Periphery

What are stylised network models?

- Ideal type networks
- Constructed according to 1-2 simple rules
- Exaggerate structural features commonly found in networks
- Centrality
- Cohesion
- Randomness

1. Regular Tree

- Rationale:

- Some networks tend to be centralised, i.e. some nodes have better reach than others and/or network is asymmetric
- Often the case in asymmetric, functional, or hierarchically organised settings
- Generated by creating a network of branching nodes with parameters:
- Number of branches per node (here 2)
- Network distance (generations) or dimensions (here $n=50$)
- Uses: some use in organizational and biological networks

Graph theoretic dimensions (GTD) of hierarchy

- Hierarchy common in networks/ life (Simon 1981), but while intuitive, difficult to be precise
- Krackhart (1994) provided an elegant definition of ideal typical hierarchy as an out-tree graph, where all nodes connected and all but one (the 'boss') has an in-degree of one.
- Four individually necessary and jointly sufficient conditions:
- Connectedness: proportion of dyads reachable
- Hierarchy: inverse of reciprocity
- Efficiency: sum of minimum indegrees over sum of actual indegrees

- (Least) upper bound: a node that can reach a pair of other nodes (lub is an upper bound that is included on at least one directed path from every other upper bound to each of x and y)

Krackhardt 1994, Everett and Krackhardt 2012

2. Regular Lattice

- Rationale:

- Some networks tend to be clustered, i.e. high probability that one's interaction partners also interact
- Often the case where geographic or social space important
- Generated by arranging nodes on a lattice with parameters:
- Can vary by number of dimensions (here 2)
- And neighbourhood/interaction distance (here 1+diagonal)
- Uses: commonly used in ABM to show how spatial or network clustering can allow or limit diffusion or make pockets of behaviour stable (more next week)

3. Random network

- Also known as a Bernoulli network (after Swiss mathematician Jacob Bernoulli, brother to Johann, Euler's advisor) or an Erdös-Renyi (1959; see also Rapaport 1953) network
- Rationale:

- The opposite of a structured network is a random network, i.e. where each tie has an equal probability of existing
- Rarely the case that an empirical network is truly random, but used as below
- Generated by creating edges at random on a network with parameters:
- Nodes (here 30)
- Density
- Uses: often used as a simple baseline to ascertain whether a certain substructure observed more often than expected by chance

The Matthew Effect

- In 1968, Robert Merton published an article called "The Matthew Effect in Science"
- "For unto every one that hath shall be given, and he shall have abundance; but from him that hath not shall be taken even that which he hath" Matthew 25:29
- In this article, he discussed how academic fame leads to more fame - in terms of prizes, citations, and attribution of merit (cumulative advantage or preferential attachment)
- In citation networks this mechanism in its purest form can lead to so-called scale-free networks

4. Scale Free

- Rationale:

- Some networks have a strong degree dispersion
- Often the case where positive feedback mechanisms prevalent (e.g. internet, twitter, academic papers)
- Generated by iterative creation of a network where each new node ties to existing nodes with probability proportional to their degree
- Degree distribution of this generative process follows a power law
- Uses: some scholars claim power laws are common feature of many
 networks

De Solla Price 1965; Barabási and Albert 1999

The Milgram Experiment

- In the 60s, Stanley Milgram did an experiment where he invited (through advertisement) people to send a letter to a person unknown to them through intermediaries
- He found that everybody was connected to everyone else through 6 steps
- He thought this was evidence we lived in a "small world"
- What was wrong with his experiment?

What is wrong with Milgram's (small) world?

- Selection bias: "starters" were recruited through an advertisement searching for wellconnected people
- Non-response bias: if one assumes an attrition rate, longer chains will be underrepresented
- Greedy algorithm: people can only make local decisions and cannot omnisciently recognise the shortest global path
- But, Watts and Strogatz (1998) showed this using computer simulations and rise of relational rewiring has brought " 6 degrees of separation" into popular culture

Regular

5. Small World

- Rationale

- Some networks tend to be clustered by interconnected by just a few spanning ties
- Often the case across a surprising range of settings
- Generated by creating a (ring) lattice and then rewiring a few ties at random with parameters:

Small-world

Random

Choose the odd one out

Van Lidth de Jeude et al (2018); see also Prell et al. (2023)

Pick the odd one out

- The idea that at a meso-level there are more centralised networks with a group of central/core nodes and then others around them is a potentially theoretically relevant observation for many networks
- e.g. world systems theory (Wallerstein 1974; 2004; Snyder and Kick 1979)
- Various methods for extracting core-periphery structures: statistical inference, spectral decomposition, diffusion mapping, motif counting, geodesic tracing, model averaging

Van Lidth de Jeude et al (2018); see also Prell et al. (2023)

Classic 'hub-and-spoke’ two-block model

- A fundamental network pattern: dense "core" of tightly connected nodes, connected less densely to peripheral nodes, which are themselves sparsely connected
- Two groups: "core nodes are adjacent to other core nodes, core nodes are adjacent to some periphery nodes, and periphery nodes do not connect with other periphery nodes"
- A central hub and a periphery that radiates out from that hub, gets at core-as-density

Alternative: layered coreness

- Alternatively, some instead look at k-cores
- The largest subset of nodes in the network such that every node has at least k connections to other nodes in the k-core but not the ($k+1$)-core
- Periphery described as "shells","onion layers", "leaves", and core "epicenter", "corona", or "nucleas"
- Advantages that it is scalable and gets at core-as-nesting

Stylised network models
 provide ideal typical patterns of interaction

Stylised network models

provide ideal typical patterns of interaction

- Can illuminate how micro mechanisms create macro structures
- Good for theory-building and understanding that structure matters

Stylised network models

provide ideal typical patterns of interaction

- Can illuminate how micro mechanisms create macro structures
- Good for theory-building and understanding that structure matters
- These mechanisms at best capture only part of the story
- Little use in comparing empirical and stylised networks and claim that a "fit" means the network is explained

Network Robustness

Network percolation theory is a literature that tries to identify how many random or specific nodes can be removed before a network breaks into multiple components

Cohesion and Adhesion

- Cohesion is a count of the number of nodes that would
 need to be dropped for the number of components to increase
- Cutpoints are the nodes that, if dropped, would result in the number of components to increase
- Adhesion is a count of the number of ties that would need to be dropped for the number of components to increase
- Bridges are the ties that, if dropped, would result in the number of components to increase

Topology

Scale-Free

Small-World

Core-Periphery

