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Stylised  
Networks



What are  
stylised network models?

- Ideal type networks 

- Constructed according to 1-2 simple rules 

- Exaggerate structural features commonly found in networks 
- Centrality 
- Cohesion 
- Randomness



1. Regular Tree
- Rationale: 

- Some networks tend to be centralised, i.e. some nodes have better reach than others and/or 
network is asymmetric 

- Often the case in asymmetric, functional, or hierarchically organised settings 

- Generated by creating a network of branching nodes with parameters: 

- Number of branches per node (here 2) 

- Network distance (generations) or dimensions (here n=50) 

- Uses: some use in organizational and biological networks



Graph theoretic dimensions (GTD) of hierarchy
- Hierarchy common in networks/ life (Simon 1981), but while intuitive, difficult to be precise 

- Krackhart (1994) provided an elegant definition of ideal typical hierarchy as an out-tree graph, where all 
nodes connected and all but one (the ‘boss’) has an in-degree of one. 

- Four individually necessary and jointly sufficient conditions: 

- Connectedness: proportion of dyads reachable 

- Hierarchy: inverse of reciprocity 

- Efficiency: sum of minimum indegrees over sum of actual indegrees 

- (Least) upper bound: a node that can reach a pair of other nodes (lub is an upper bound that is included 
on at least one directed path from every other upper bound to each of x and y)

Krackhardt 1994, Everett and Krackhardt 2012
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2. Regular Lattice
- Rationale: 

- Some networks tend to be clustered, i.e. high probability that one’s interaction partners also interact 

- Often the case where geographic or social space important 

- Generated by arranging nodes on a lattice with parameters: 

- Can vary by number of dimensions (here 2) 

- And neighbourhood/interaction distance (here 1+diagonal) 

- Uses: commonly used in ABM to show how spatial or network clustering can allow or limit diffusion or 
make pockets of behaviour stable (more next week)



A random network

March 9, 2015 Chair of Social Networks at ETH 46

3. Random network
- Also known as a Bernoulli network (after Swiss mathematician Jacob Bernoulli, brother to 

Johann, Euler’s advisor) or an Erdös-Renyi (1959; see also Rapaport 1953) network 

- Rationale: 
- The opposite of a structured network is a random network, i.e. where each tie has an 

equal probability of existing 
- Rarely the case that an empirical network is truly random, but used as below 

- Generated by creating edges at random on a network with parameters: 
- Nodes (here 30) 
- Density 

- Uses: often used as a simple baseline to ascertain whether a certain substructure observed 
more often than expected by chance



The Matthew Effect
- In 1968, Robert Merton published an article called “The Matthew Effect in Science” 

- “For unto every one that hath shall be given, and he shall have abundance; but from him that 
hath not shall be taken even that which he hath” Matthew 25:29 

- In this article, he discussed how academic fame leads to more fame — in terms of prizes, 
citations, and attribution of merit (cumulative advantage or preferential attachment) 

- In citation networks this mechanism in its purest form can lead to so-called scale-free 
networks

Merton 1968
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4. Scale Free

De Solla Price 1965; Barabási and Albert 1999

- Rationale: 

- Some networks have a strong degree dispersion 

- Often the case where positive feedback mechanisms prevalent 
(e.g. internet, twitter, academic papers) 

- Generated by iterative creation of a network where each new node 
ties to existing nodes with probability proportional to their degree 

- Degree distribution of this generative process follows a power law 

- Uses: some scholars claim power laws are common feature of many 
networks



The Milgram Experiment

- In the 60s, Stanley Milgram did an experiment where he invited (through advertisement) 
people to send a letter to a person unknown to them through intermediaries 

- He found that everybody was connected to everyone else through 6 steps 

- He thought this was evidence we lived in a “small world” 

- What was wrong with his experiment?



What is wrong with Milgram’s (small) world?
- Selection bias: “starters” were recruited through an advertisement searching for well-

connected people 

- Non-response bias: if one assumes an attrition rate, longer chains will be underrepresented 

- Greedy algorithm: people can only make local decisions and cannot omnisciently recognise 
the shortest global path 

- But, Watts and Strogatz (1998) showed this using computer simulations and rise of relational 
rewiring has brought “6 degrees of separation” into popular culture

See also Connor and Simberloff 1979



5. Small World
- Rationale 

- Some networks tend to be clustered by interconnected by just a few spanning 
ties 

- Often the case across a surprising range of settings 

- Generated by creating a (ring) lattice and then rewiring a few ties at random 
with parameters: 

- Lattice dimensions and distance 

- Probability of a tie being rewired 

- Uses: commonly used to show “it’s a small world after all” and to model 
diffusion





Choose the odd one out

Van Lidth de Jeude et al (2018); see also Prell et al. (2023)
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FIG. 1. Examples of mesoscale network structures: a traditional community structure is shown on the left, a purely bipartite
network is shown in the middle and a core-periphery structure is shown on the right. White blocks represents subsets of nodes
whose link density is zero, darker blocks represents subsets of nodes whose link density is higher.

of surprise [18–20]
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(the sum runs up to the value i = min{L, Vint}) where
V = N(N � 1) is the volume of the network, coinciding
with the total number of nodes pairs, Vint is the total
number of intracluster pairs (i.e. the number of nodes
pairs within the individuated communities), L is the to-
tal number of links and l⇤ is the observed number of intr-
acluster links (i.e. within the individuated communities).
The hypergeometric distribution shown in eq. 1 describes
the probability of observing i successes in L draws (with-
out replacement) from a finite population of size V that
contains exactly Vint objects with the desired feature (in
our case, being an intracluster pair), each draw being
either a success or a failure. Surprise is the p-value of
such an hypergeometric distribution, testing the statisti-
cal significance of the observed partition against the null
hypothesis that the intracluster link density pint =

l⇤

Vint

is compatible with the density p = L
V predicted by the

Directed Random Graph Model.

The limitations of surprise

While traditional surprise S is suited for community
detection, it su↵ers from several limitations whenever
employed to detect bimodular mesoscale structures.

Bipartite networks. Let us first consider a purely bi-
partite network, as the one shown in fig. 1, whose first
and second layer consist of N1 and N2 nodes respec-
tively. Since we would like S to reveal two (empty)
communities, we would be tempted to instantiate eq. 1
with the values V = (N1 + N2)(N1 + N2 � 1), Vint =
N1(N1 � 1) +N2(N2 � 1) and l⇤ = 0; upon considering,
however, that L  Vint, the explicit computation of S
reveals that S = 1 (as follows from the Vandermonde
identity). Since S is nothing else than a p-value, a signif-
icant partition is expected to satisfy S  Sth, with Sth

usually chosen to attain the value 0.01 or 0.05. In our
case, however, the opposite result is obtained: the con-
sidered (bi)partition cannot be significant, independently
from the actual number of connections characterizing the

considered configuration. This example highlights one of
the limitations of the definition provided in eq. 1.
Star-like networks. Let us now consider proper core-

periphery networks: according to the intuitive definition
provided in [7], such configurations are characterized by
a densely-connected portion, i.e. the core (in the ideal
case cc ' 1) and a sparsely-connected portion, i.e. the
periphery (in the ideal case cp ' 0). The density of the
intermediate portion is variable, although the chain of
inequalities cp  ccp  cc is always assumed to hold.
Let us consider a peculiar example of this kind of net-
works, i.e. a configuration with a fully connected core
plus a periphery of nodes, each of which is connected
to just one core node (for the moment, let us suppose
that the number of core nodes coincides with the num-
ber of periphery nodes - see fig. 2). Let us now instanti-
ate S on a partition that identifies each periphery node
as a community on its own while considering the core
as a traditional community. If we consider a core por-
tion of N1 nodes and N2 = N1 peripherical nodes, we
have V = (N1 + N2)(N1 + N2 � 1), Vint = N1(N1 � 1),
L = N1(N1 � 1) + 2N1 and l⇤ = N1(N1 � 1). In this
case, only the addendum corresponding to V � Vint =
3N2

1 �N1 = 2N1 +N1(N1 � 1) + 2N1(N1 � 1) survives,
leading to

S =

�N1(3N1�1)
2N1

�
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N1(N1+1)

� (2)

which is of the order of 10�3 for N1 = 3 and rapidly de-
creases as N1 grows (see fig. 2). Since S < Sth = 0.01,
such a partition is recovered as significant. As confirmed
by running the PACO algorithm [20], such a configura-
tion - constituted by an unreasonably large number of
single-nodes communities - is indeed recognized as the
optimal one. For the sake of comparison, let us calcu-
late S for the “reasonable” partition identifying the core
and the periphery as two separate communities: in this
case, V = (N1 +N2)(N1 +N2 � 1), Vint = 2N1(N1 � 1),
L = N1(N1 � 1) + 2N1 and l⇤ = N1(N1 � 1). As our
explicit calculation reveals, such a partition can indeed
be significant but it is not the optimal one (see also fig.
2).
k-star networks. Let us now generalize the star-like

network model, by considering a graph with k peripher-



Pick the odd one out

- The idea that at a meso-level there are more centralised networks with a group of central/core nodes 
and then others around them is a potentially theoretically relevant observation for many networks 

- e.g. world systems theory (Wallerstein 1974; 2004; Snyder and Kick 1979) 

- Various methods for extracting core-periphery structures: statistical inference, spectral 
decomposition, diffusion mapping, motif counting, geodesic tracing, model averaging

Van Lidth de Jeude et al (2018); see also Prell et al. (2023)
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FIG. 1. Examples of mesoscale network structures: a traditional community structure is shown on the left, a purely bipartite
network is shown in the middle and a core-periphery structure is shown on the right. White blocks represents subsets of nodes
whose link density is zero, darker blocks represents subsets of nodes whose link density is higher.
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from the actual number of connections characterizing the

considered configuration. This example highlights one of
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Classic ‘hub-and-spoke’ two-block model
- A fundamental network pattern: dense “core” of tightly 

connected nodes, connected less densely to peripheral 
nodes, which are themselves sparsely connected 

- Two groups: “core nodes are adjacent to other core 
nodes, core nodes are adjacent to some periphery nodes, 
and periphery nodes do not connect with other periphery 
nodes” 

- A central hub and a periphery that radiates out from that 
hub, gets at core-as-density

Borgatti and Everett 1999; see also  Zhang et al 2015,  
Kojaku and Masuda 2017, Rombach, Porter et al. 2014
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Alternative: layered coreness
- Alternatively, some instead look at k-cores 

- The largest subset of nodes in the network 
such that every node has at least k 
connections to other nodes in the k-core 
but not the (k+1)-core 

- Periphery described as “shells”, “onion 
layers”, “leaves”, and core “epicenter”, 
“corona”, or “nucleas” 

- Advantages that it is scalable and gets at 
core-as-nesting

Gallagher, Young and Welles 2021
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Stylised network models

- Can illuminate how micro mechanisms 
create macro structures 

- Good for theory-building and 
understanding that structure matters

provide ideal typical patterns of interaction



Stylised network models

- Can illuminate how micro mechanisms 
create macro structures 

- Good for theory-building and 
understanding that structure matters

provide ideal typical patterns of interaction

- These mechanisms at best capture only 
part of the story 

- Little use in comparing empirical and 
stylised networks and claim that a “fit” 
means the network is explained



Network Robustness

Network percolation 
theory is a literature 
that tries to identify 
how many random or 
specific nodes can be 
removed before a 
network breaks into 
multiple components

https://www.researchgate.net/publication/306436031_S2_Video


Cohesion and Adhesion
- Cohesion is a count of the number of nodes that would 

need to be dropped for the number of components to 
increase 

- Cutpoints are the nodes that, if dropped, would result in 
the number of components to increase 

- Adhesion is a count of the number of ties that would need 
to be dropped for the number of components to increase 

- Bridges are the ties that, if dropped, would result in the 
number of components to increase
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