GENEVA GRADUATE INSTITUTE

INSTITUT DE HAUTES ÉTUDES INTERNATIONALES ET DU DÉVELOPPEMENT GRADUATE INSTITUTE OF INTERNATIONAL AND

DEVELOPMENT STUDIES

Centrality

Social Networks Theories and Methods

James Hollway

Preliminary business

- TA
- Material
- Tutorials
- Slack
- Github

What is 'centrality'?

- Being *central* in a network is a <u>central</u> concept in networks research...

- Why could 'being central' be important...
 - In your friendship network?
 - At work/uni?
 - In your empirical domain of interest?

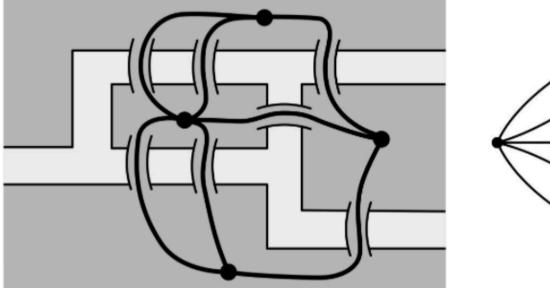
Centrality questions

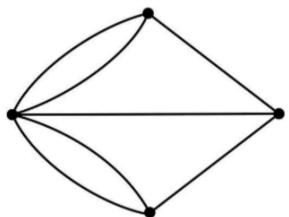
- Does a node have access to lots of resources?
- Does a node have access to different resources?
- Does a node connect different parts of the network?
- Does a node control the interaction between other nodes?
- Would the failure of a node cause the system to collapse?
- Is a node considered popular by others?
- Which nodes' esteem matters?

WARNING

0

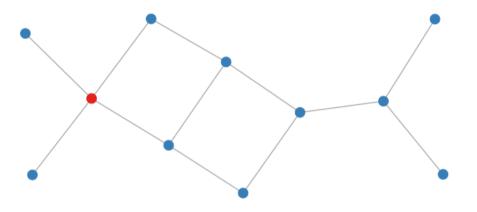
Warning


Not one kind of centrality


Many, with several in regular use:

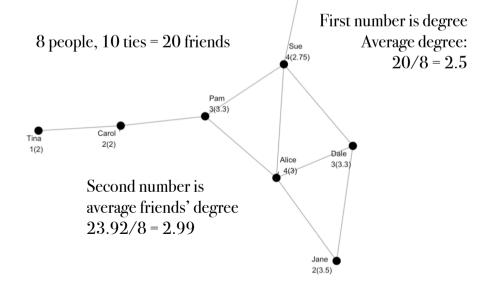
- Degree
- Closeness
- Betweenness
- Eigenvector
 - ...

They need to be deployed with care, *theoretically*...


Recap: handshaking lemma

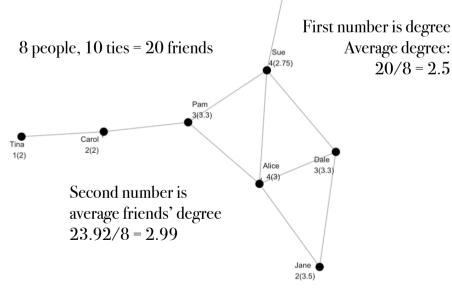
Degree centrality

- Question: how many ties does a node have?
- Theory: about e.g. activity, popularity, attention
- Method: degree, outdegree, and indegree


$$c_D(i) = \sum_{j \in V} x_{ij}$$
 $c_{D+}(i) = \sum_{j \in V} x_{ij}$ $c_{D-}(i) = \sum_{j \in V} x_{ji}$

See also strength and weighted centrality extensions, e.g. Opsahl et al. 2010

Do you have +/- friends than your friends?


Do you have +/- friends than your friends?

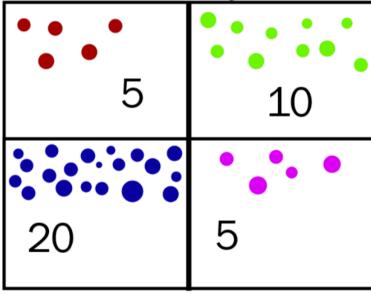
- Option 1: data collection
 - Go on Facebook, count how many "friends" you have
 - Click on every one of those "friends" and see how many "friends" they have on average
 - Get a late dinner...

Do you have +/- friends than your friends?

- Option 1: data collection
 - Go on Facebook, count how many "friends" you have
 - Click on every one of those "friends" and see how many "friends" they have
 - Get a late dinner...

- Option 2: graph theory

$$\frac{\sum d_v^2}{\sum d_v} \ge \frac{\sum d_v}{n}$$


- q.e.d

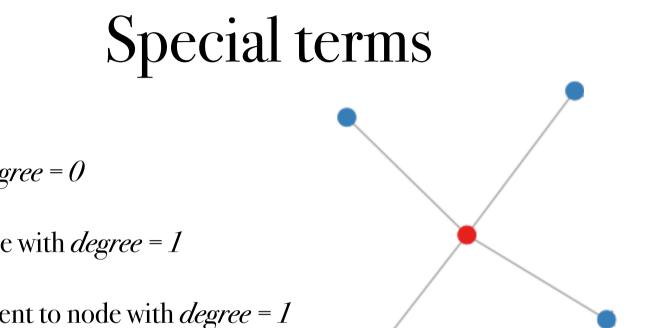
That is, you are unlikely to be most popular (1/n) but likely to be connected to most popular (d^*/n)

See Feld (1991) "Why your friends have more friends than you do" *American Journal of Sociology* 96(6): 1464-1477.

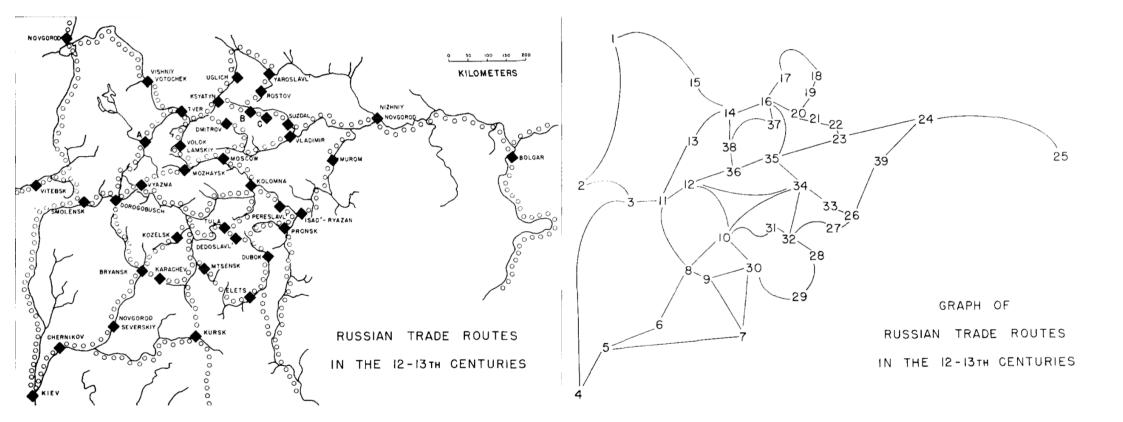
Similar situations

Class Size Paradox: Four UniversityClasses

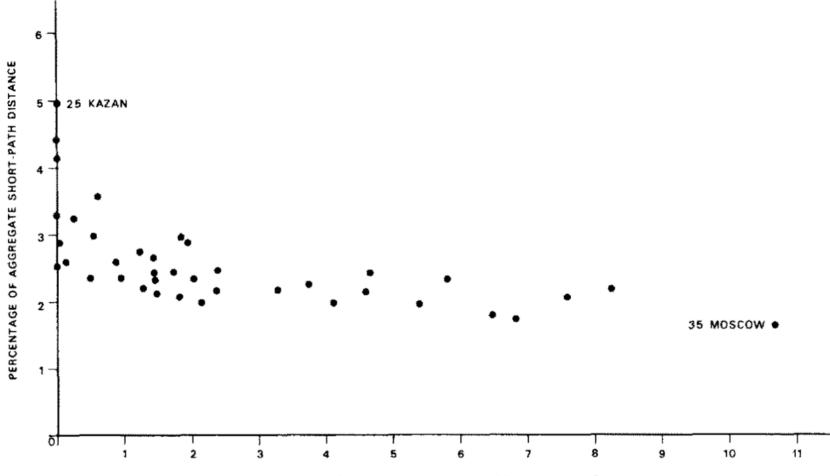
The size of the average class is 10. The class size experienced by the average student is 13.75. The average student is in a larger than average class.


- Class paradox: larger class than average
- Mothers paradox: more children than average
- <u>Lovers paradox</u>: more lovers than you
- Disease paradox: friends get flu first

Lesson #1

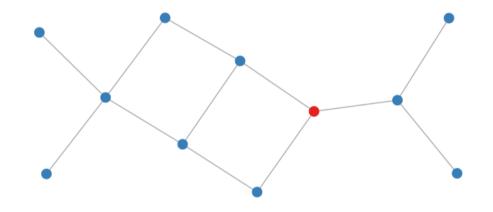

- Networks can fool people: just like how the earth seems flat because we're on it, people may get incorrect ideas about society because they're *in* it

Tasks

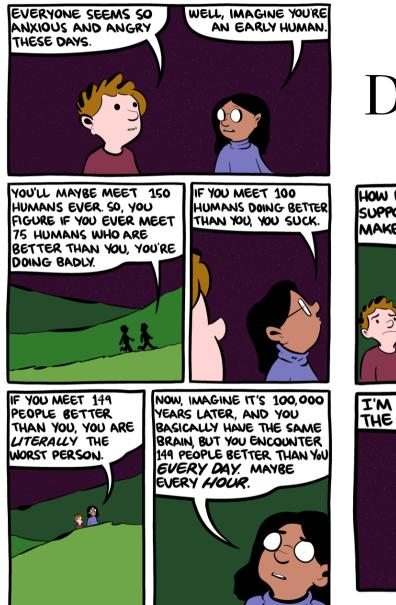

- EASY: Can you think of a network in which nobody has fewer friends than their friends?
- MEDIUM: Can you think of a network in which almost everybody has fewer friends than their friends?
- HARD: Can you think of a network where most have more friends than their friends?

- Isolate: node with *degree* = 0
- Leaf or pendant: node with *degree* = 1
- Pendant tie: tie adjacent to node with *degree* = 1
- **Dominating**: node with *degree* = *n*-1
- Star graph: network where *n*-1 ties adjacent to single node

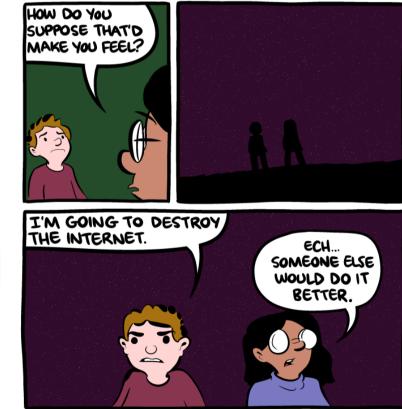
See Pitts (1978) "The medieval river trade network of Russia" Social Networks 1: 285–292.


PERCENTAGE OF INTERMEDIATE NODE OCCURRENCE RATE

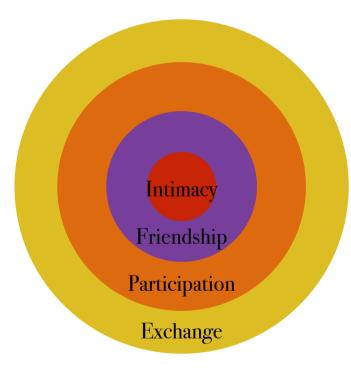
Betweenness centrality


- AKA medial centrality
- Question: how many shortest paths go through the node?
- Theory: about e.g. brokering, transmission, contagion, innovation
- Method:

$$c_B(i) = \sum_{i,j,k \in \mathbb{N}} \frac{\sigma_{jk\ i}}{\sigma_{jk}}$$

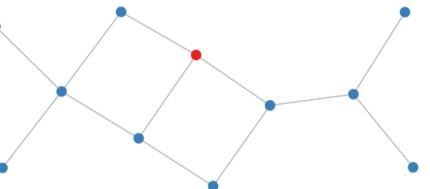

- Naïve calculation complex

See also weighted and percolation centrality extensions, e.g. Piraveenan et al. 2013



Dunbar's number

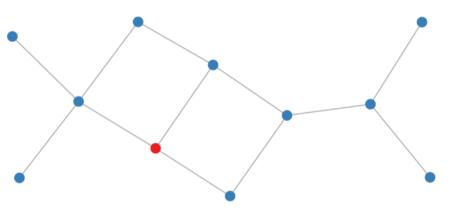
Smbc-comics. com


How many people do we need to be close to to be happy?

- Dunbar's number (150) can be more differentiated:
 - 3-5 closest BFFs
 - 9-15 friends and family who are your go-to comrades
 - 30-45 allies and colleagues
 - 90-135 wider acquaintances

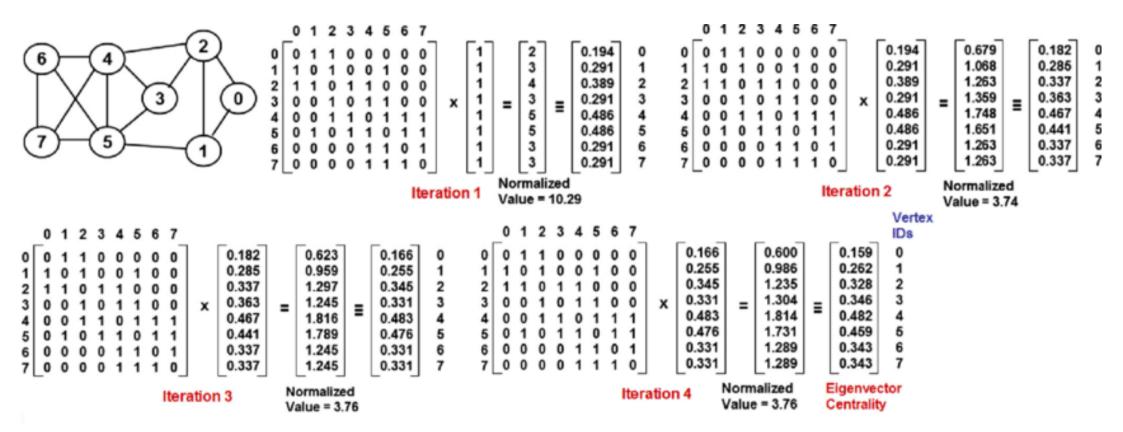
Closeness centrality

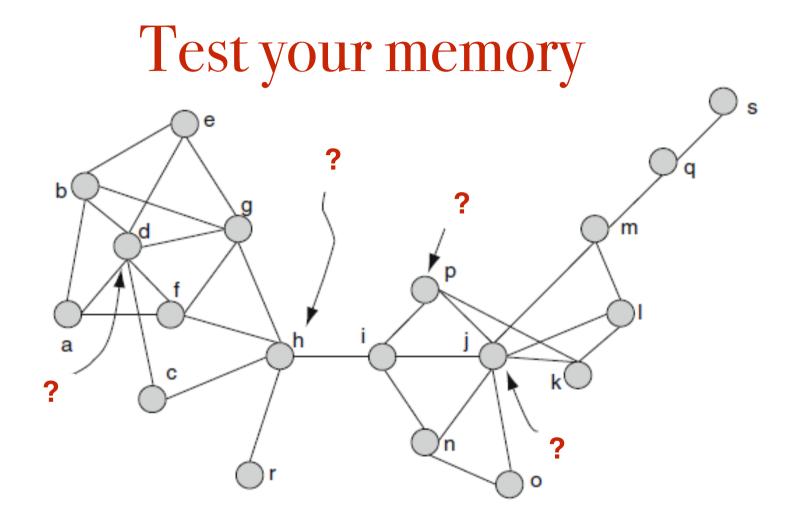
- AKA radial centrality
- Question: how short are the distances to all other nodes?
- Theory: about capacity to e.g. communicate, diffuse, draw on all networked resources
- Method: normalised inverse of the sum over all dyadic distances, *d(i,j)*, i.e. the farness

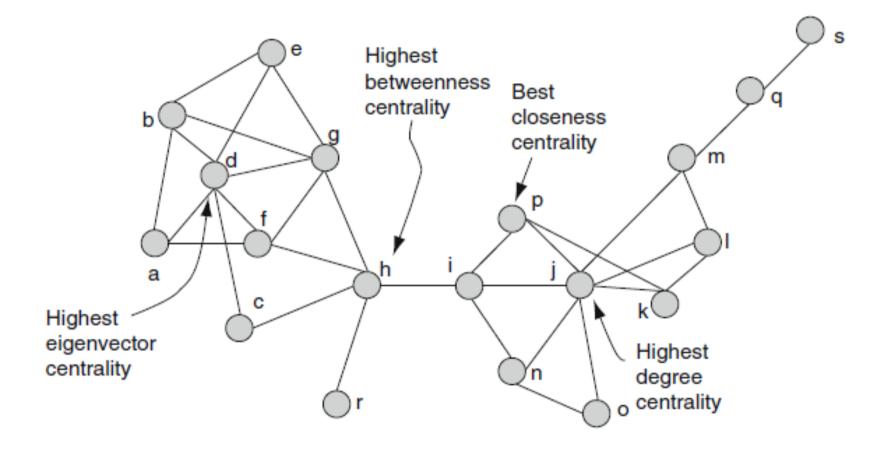

$$c_C(i) = \frac{N-1}{\sum_{j \in V} d(i,j)}$$

Bavelas (1950). See also harmonic centrality (Marchiori and Latora 2000), information centrality (Stephenson and Zelen 1989) and reach centrality extensions

Eigenvector centrality

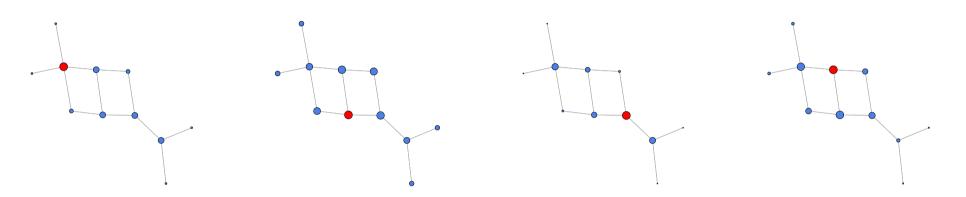

 $j \in \overline{N(i)}$

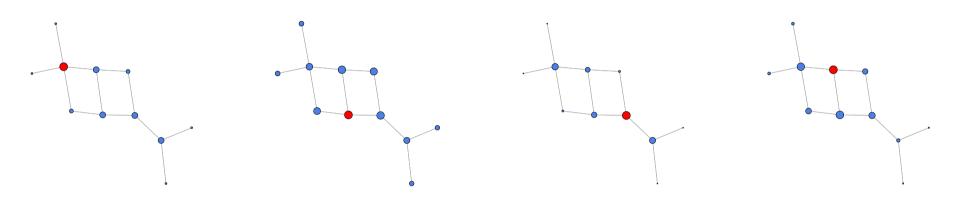

- AKA feedback centrality
- Question: how connected is the node to important (central) neighbours
- Theory: about e.g. power, influence, support
- Method: leading eigenvector of sociomatrix $c_E(i) = \frac{1}{\lambda} \sum_{i=1}^{N} a_{i,j} x_i$
 - With $\delta = 1/\alpha$ being an eigenvalue of the adjacency matrix and N(i) the neighbour nodes of i
 - In undirected networks, $c_E(i)$ with $\alpha = 1$ equals the degree centrality (stationary distribution of a random walk)
 - Perron-Frobenius theorem: non-negative irreducible matrices have leading eigenvalues, leading eigenvectors, and symmetric eigenvalues



TIC eigenvalues Remarkably old method: <u>Landau 1895</u>, Leontief 1941, Seeley 1949. See also Bonacich power and alpha centrality, HITS (Hubs and Authorities), PageRank (Brin and Page 1998) and Katz centrality extensions

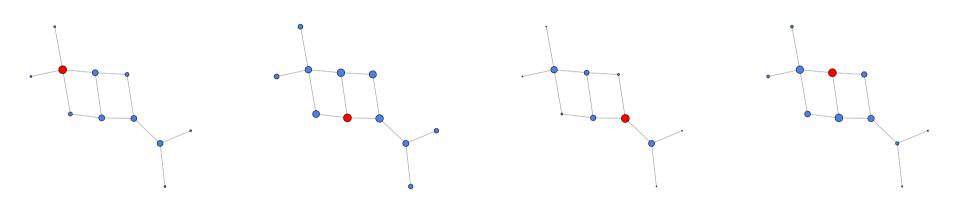
How the sausage is made




1	1 IA 8000 1979 DC				F	Periodic	Table	of Net	work C	entralit	y							18 VIIIA 518 1989 IC	
	Degree	2 IIA											13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	Information C	
2	224 1971 BC Betweenness	239 2008 EBC Endpoint BC	EBC										26 1909 kPC kPath C.	275 2002 EGO Ego	51 2004 HYPER Hypergraphs	279 1997 AFF Affiliation C.	399 2 001 α-C α-Cent.	178 1995 ECC Eccentricity	
3	942 1966 CC Closeness	239 2008 PBC Proxy BC	3 IIIA	4 IVB	5 VB	6 VIB	7 VIIB	8 VIIIB	9 VIIIB	10 VIIIB	11 IB	12 IIB	9068 1999 HITS Hubs/Authority	573 2006 g-kPC geodesic kPath	296 1999 GROUP Groups/Classes	80 2006 HYPSC Hyperg. SC	34 2010 t-SC t-Subgraph	116 1998 RAD Radiality	
4	1279 1972 EC Eigenvector	239 2008 LSBC LscaledBC	224 1971 EBC Edge BC	53 2009 CBC Commun. BC	236 2007 ΔC Delta Cent.	5 2010 MDC MD Cent.	0 2015 EYC Entropy C.	2 2013 CAC Comm. Ability	56 2007 EPTC Entropy PC	281 1971 CCoef Clust. Coef.	42 2012 PeC PeC	427 2007 BN Bottleneck	43 2009 El Essentiality I.	573 2006 e-kPC e-disjoint kPC	573 2006 v-kPC v-disjoint kPC	505 2010 WEIGHT Weighted C.	17 2013 TCom Total Comm.	116 1998 INT Integration	
5	1306 1953 KS Katz Status	239 2008 DBBC DBounded BC	979 2005 RWBC RWalk BC	477 1991 TEC Total Effects	42 2009 LI Lobby Index	11 2008 MC Mod Cent.	0 2014 COMCC Community C	45 2012 ECCoef ECCoef	0 2015 SMD Super Mediat.	1 2014 UCC United Comp.	4 2012 WDC WDC	119 2008 MNC MNC	43 2009 KL Clique Level	179 2005 BIP Bipartivity	426 1988 GPI GPI Power	116 1991 kRPC Reachability	58 2007 SCodd odd Subgraph	586 2004 RWCC RWalk CC	
6	8053 1999 PR Page Rank	239 2008 DSBC DScaled BC	291 1953 σ Stress	477 1991 IEC Immediate Eff.	1 2014 DM Degree Mass	10 2012 LAPC Laplacian C.	0 2012 ABC Attentive BC	1699 2001 STRC Straightness C	0 2015 SNR Silent Node R.	15 2011 HPC Harm. Prot.	26 2011 LAC Local Average	119 2008 DMNC DMNC	3 2013 LR Lurker Rank	2457 1987 β-C β Cent.	x x HYP Hyperbolic C.	27 2012 kEPC k-edge PC	13 2007 FC Functional C.	0 2014 HCC Hierar. CC	
7	484 2005 Subgraph	613 1991 FBC Flow BC	14 2012 RLBC RLimited BC	477 1991 MEC Mediative Eff.	69 2010 LEVC Leverage Cent.	35 2010 TC Topological C.	x x SDC Sphere Degree	15 2010 ZC Zonal Cent.	14 2013 Cl Collab. Index	11 2013 CoEWC CoEWC	45 2012 NC NC	108 2010 MLC Moduland C.	x x RSC Resolvent SC	1 2014 SWIPD SWIPD	36 2009 XXXX LinComb	0 2014 BCPR BCPR	0 2014 TPC Tunable PC	0 2015 EDCC Effective Dist.	
	citations year C Name	year				8000 1979 Freeman Conceptual	942 1966 Sabidussi Axiomatic	573 2006 Borgatti/Everett Conceptual	1130 2005 Borgatti Conceptual	24 2014 Boldi/Vigna Axiomatic	252 1974 Nieminen Axiomatic	6 1981 Kishi Axiomatic	3 2012 Kitti Axiomatic	3 2009 Garg Axiomatic	 "Tradition Betweenne Friedkin N Miscellane Path-base 			ess-like leasures ous	
0	David Sah	och (Uni	unsity of	Konstanz	`	2065 1934 Moreno Historic	1546 1950 Bavelas Historic	780 1948 Bavelas Historic	1475 1951 Leavitt Historic	297 1992 Borgatti/Everett Conceptual	3649 2001 Jeong et al. Empirical	4167 1998 Tsai/Ghoshal Empirical	961 1993 Ibarra Empirical	71 2008 Valente Empirical		Spec Spec			

Which centrality should I use?

Option 1: Just try all and see?


Which centrality should I use?

Option 1: Just try all and see?

Option 2: Create index of all?

Which centrality should I use?

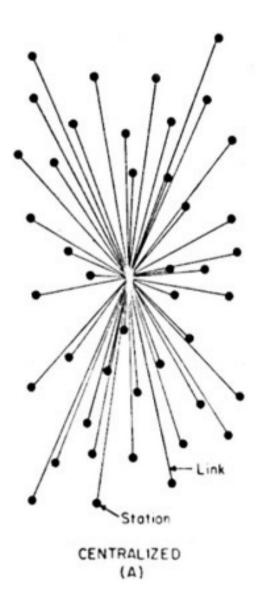
Option 1: Just try all and see?

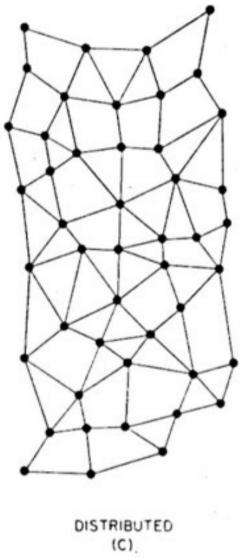
Option 2: Create index of all?

NO, option 3: derive centrality measure based on theoretical assumptions (see also Zweig 2016)

Depends on research question and meaning of the edges: Support?

Flow?


Power?

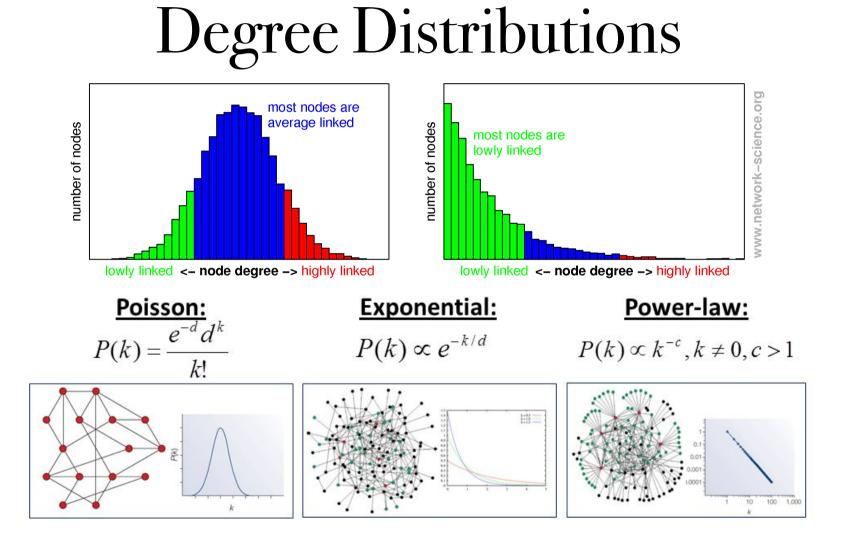

Access?

How should I use centrality?

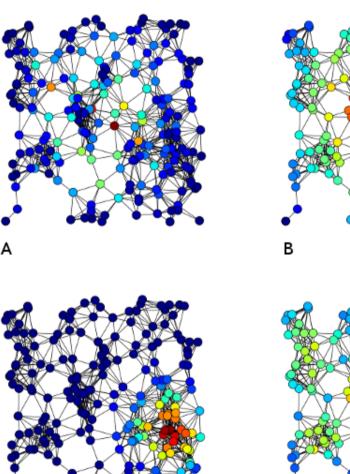
- Ultimately ordinal, not interval, scale: there is no "unit of centrality"
 - Makes comparing across measures difficult
 - Makes comparing across networks difficult (even with normalisation)
- To identify nodes with the most (usually) or least central positions
 - Inequality of centrality thought to correlate with some other inequality among nodes
 - But you can also use differences in centrality to characterise the overall centralization of the network...

Lesson #2: Choose centrality carefully

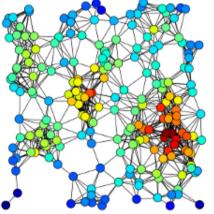
Centralisation

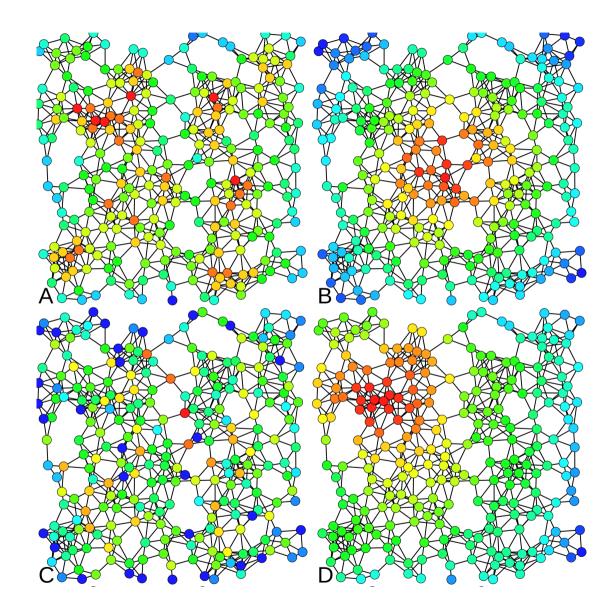

Question: how central is a network's most central node compared to all others?

Theory: about inequality, coordination, efficiency


Method: every centrality measure has its own centralisation measure:

$$\max \sum_{i=1}^{N} C_x(p_*) - C_x(p_i)$$


- 1. obtain largest centrality
- 2. calculate sum of differences between each node and all other nodes
- 3. take the maximum of this
- 4. divide by theoretically largest such sum of differences in any network of the same size


Jennings 1932

С

D

